
PDHonline Course E157 (3 PDH)

Artificial Intelligence: Technologies for
Smart Systems Design

2020

Instructor: Warren T. Jones, Ph.D., PE

PDH Online | PDH Center
5272 Meadow Estates Drive

Fairfax, VA 22030-6658
Phone: 703-988-0088
www.PDHonline.com

An Approved Continuing Education Provider

http://www.PDHonline.com

www.PDHcenter.com PDH Course E157 www.PDHonline.org

Page 1 of 26

Artificial Intelligence: Technologies for Smart

Systems Design

Warren T. Jones, Ph.D., P.E.

Course Content

Module #1: Introduction and Definitions

What is Artificial Intelligence? The definition given by the American Association for
Artificial Intelligence is “the scientific understanding of the mechanisms underlying
thought and intelligent behavior and their embodiment in machines.”

The term “artificial intelligence” is more likely to conjure up a vision of the science
fiction robotic takeover of the earth than the more mundane and useful “smart” software
functions that are becoming increasingly commonplace in engineering systems and
equipment. Not surprisingly, the AI field contains elements of both of these components
with the former being labeled “strong AI” and the latter “weak AI”. The goal of the
everyday “smart system engineer” is the building of systems that may exhibit intelligent
behavior that can be leveraged to increase the productivity of the human users of the
system, with little interest in the more exotic “strong AI” issues. We will not dwell here
on the philosophical issues.

The genesis of the AI field is generally recognized as being the seminal paper in 1950 by
Alan Turing entitled “Computing Machinery and Intelligence”. Although the actual term
“artificial intelligence” was not coined until six years later at a Dartmouth summer
workshop, he was the first to articulate a complete vision of the field. Special purpose
programming languages LISP and PROLOG were developed early in the field for non-
numeric symbol processing applications development.

 2

Module #2: Expert Systems

Rule-based Expert Systems

Expert systems technology emerged in the late 1970’s when it became clear that the early
AI approaches of general search mechanisms over large state spaces for solving broad
classes of problems did not scale up from small problems to more complex practical
applications. These disappointing results led to the realization that more practical results
could be achieved building systems with narrow task-specific domain knowledge.

The name “expert systems” is derived from the term “knowledge-based expert systems”.
They are sometimes referred to as symbolic processors since they process linguistic
symbols and lists rather that numerical data. These systems are built by capturing task-
specific expertise and employ a reasoning system which imitates the human expert
problem solving capabilities. Task-specific expertise is knowledge acquired from
training, reading and experience and includes the following:

- Facts about the problem area

- Theoretical knowledge about the problem area

- Rigid rules and procedures regarding the problem

- “Rules of thumb” (heuristics) guidelines of what to do in specific problem

situations

- Overarching strategies for problem solutions

- Problem area meta-knowledge (knowledge about knowledge)

Experts are known to make better and faster decisions in solving complex problems than
non experts and becoming an expert in a given area typically takes several years.
Expertise is a somewhat nebulous term and we typically refer to a person’s level of
expertise. The distribution of expertise appears to be the same for any type of
knowledge. The upper ten percent has a performance level of about three times higher
than the average and thirty times higher than the lower ten percent. This information
implies that the overall effectiveness of human expertise in a given problem area can be
greatly increased if the expertise of this upper ten percent can be made accessible to the
others. Expert behavior seems to be characterized by the following activities:

- Recognition and problem formulation

- Rapid proper problem solving

- Explaining the solution

 3

- Learning from experience

- Reorganizing knowledge periodically

- Knowing when to break the rules with exceptions

- Determining relevance of their expertise

- Degrading gracefully at the boundaries of their expertise

The goal of expert system development is to capture as much of the above behavior as
possible. Items two and three above were the focus of early systems development. Expert
systems technology represents opportunities for productivity increases in many ways.
The technology can be used in the following ways:

- to capture scarce expertise

- to train future experts

- to provide 24/7 access to expertise

- to provide access in remote locations if needed

- to provide higher quality advice in some cases where the integration of the

knowledge of several experts is built into the system

- to solve problems in areas that are hazardous to humans

Knowledge acquisition from experts turns out to be a complex process and is sometimes
called the “bottleneck” of expert systems development. The acquired knowledge is
frequently represented in the form of rules of the form IF (condition) THEN (conclusion).
Hence the name Rule-Based Expert Systems.

For example,

IF (car won’t start), THEN (check the battery).

A knowledge base can contain hundreds or sometimes thousands of these rules. This
knowledge can be obtained in a variety of ways by a knowledge engineer. Manual
methods are usually some type of interviewing process designed to extract knowledge
from one or more experts. There are knowledge acquisition methods approaching full
automation in which rule induction systems generate rules from large collections of
domain data, when available.

 4

When completed, a knowledge base and a current collection of facts are used by the
inference engine to produce a recommended solution to the problem situation represented
by the input factual data. Each fact is matched to the IF part of a rule. When a match is
made, the rule is said to “fire” and the THEN part of the rule is executed. This matching
and firing process for the input data produces “inference chains”.

Inference chains can be produced by either “forward chaining” or “backward chaining”.
Forward chaining is a strategy for producing whatever can be inferred from the
knowledge base and the input data and is useful for analysis and interpretation.
Backward chaining begins with a hypothetical conclusion and then looks for facts to
support it. This strategy is usually used for diagnostic problems. Many expert system
development environments support both forward and backward chaining.

The basic components of an expert system are shown below. Expert development shells,
which provide all the components except for the knowledge base and database for a given
application, are available from commercial vendors. With this design the same shell can
be used to develop systems for many different problem domains.

 Expert Systems Components

 5

The following example will be used to illustrate the forward and backward chaining
process:

Suppose the data base contains the two facts

 A is true

 B is true

and the following knowledge base of three rules.

 Rule 1: IF A and B, THEN C

 Rule 2: IF B and C, THEN D

 Rule 3: IF D, THEN G

Forward chaining is data-driven and begins with the available information. Since it is
known that A and B are true, it begins with one of them and searches for a rule that
includes A in the IF side. It finds Rule 1 and notes that in order for this rule to fire it also
needs information about B. Since B is also known to be true, Rule 1 fires and C is now
added to the data base as true. Given C is now true it looks for a rule with C in the IF
part. It finds Rule 2 and also notes that since B is in the data base as true, Rule 2 fires
adding D to the data base as true. Given that D is true, it fires Rule 3 giving G is true.

Backward chaining is goal-driven. That is, the system begins with a hypothesis or goal in
the THEN part of a rule and seeks evidence to support it. In our knowledge base the goal
is G in Rule 3. The system will first check the data base to see if G is there. Since this is
not the case, the system will check the IF part of Rule 3 and note that G will be true if D
is true. Then it will seek a rule with a conclusion of D. This is the case for Rule 2. For D
to be true in Rule 2, both B and C must be true. B is true in the data base but C is not.
However, there is a Rule 1 with a conclusion of C. Since both A and B are in the
database, when Rule 1 fires our evidence is now complete, and we can conclude that G is
true. Many expert system development tools can provide explanatory information like the
above to provide the reasoning path to the conclusion.

In this example the rules are either true or false implying the knowledge is exact. In real
world situations human knowledge is frequently inexact for a variety of reasons and it is
sometimes necessary to make decisions based on partial or incomplete information.
Therefore, there is a need for inexact inference methods that allow the combination of
imprecise data from many sources. The use of certainty factors is a popular approach to
dealing with uncertainty in the knowledge base. It was first used in one of the early
successful expert systems called MYCIN for the diagnosis of blood infections and
meningitis.

 6

Certainty factors provide a way for representing “degrees of belief”. The range of
certainty factors is from -1 (definitely false) to +1 (definitely true). Positive values
indicate the degrees of belief and negative values represent the degree of disbelief. For
example, an expert might indicate that some evidence is probably true and assign a
certainty factor of 0.6 to this evidence.

Certainty factors are based on the two functions:

 MB(H,E), measure of belief

 MD(H,E), measure of disbelief

These functions reflect the degree in which belief in hypothesis H would be increased
given support for E is observed and the degree to which disbelief in hypothesis H would
be reduced given the same evidence E. The range of MB(H,E) and MD(H,E) is between
0 and 1. Some data may increase the strength of belief, but conversely some data may
raise the level of disbelief. The certainty factor is defined in terms of these two functions
as follows:

 MB(H, E) – MD(H, E)
 cf = ---------------------------------------
 1 – min [MB(H, E), MD(H, E)]

Certainty factors can be used to express the fact that a given condition may lead to more
than one possible conclusion. For example,

 IF A

 THEN B [cf 0.8]

 C [cf 0.3]

The inference engine incorporates methods for propagating certainty factors through the
reasoning chain. Notice that certainty factors do not have to add up to 1.0 as in the case of
probabilities.

Another way to incorporate inexact information in the system is by use of Bayesian
reasoning which makes requires conditional probabilities. The Bayesian approach also
requires conditional independence of evidence for both a hypothesis and its negation as
well as reliable statistical data to establish prior probabilities for each hypothesis. A third
approach using fuzzy expert systems is discussed in the later Fuzzy Logic section.

 7

CLIPS (http://www.ghg.net/clips/CLIPS.html) is a popular public domain expert system
building tool maintained by NASA. Jess is a rule engine for the JavaTM platform.
(http://herzberg.ca.sandia.gov/jess/)

Expert systems have been used in a wide variety of applications including diagnosis,
interpretation, prediction, design, planning, monitoring and control.

Reference

Durkin, J., Expert Systems Design and Development, Prentice Hall, Englewood Cliffs,
NJ, 1994.

http://www.ghg.net/clips/CLIPS.html
http://herzberg.ca.sandia.gov/jess/

 8

Module #3: Neural Networks

Neural networks represent a radical departure from traditional computing. They consist
of networks of very small processors that are simple models of neurons in the brain. The
information and knowledge of interest is stored in the dense interconnection structure, not
in the discrete memory locations of traditional computing. Neural networks are pattern
recognition systems that can be trained to recognize patterns in a noisy input
environment. The architecture of these systems is frequently biologically inspired but not
all neural network architectures and processes are biologically plausible. In contrast with
expert systems, which are symbol processors, neural networks can be called subsymbolic
since they operate at the signal processing level. Connectionism, parallel distributed
computation and neural computation are other terms that are sometimes used for this
field.

Neural networks are usually organized into layers of neurons. In feed-forward networks
each neuron accepts input only from neurons in the preceding layer. We say that a
network is fully connected if each neuron has inputs from all units in the preceding layer.
See example network below. Input signals are applied to the input layer on the left and
signal activation flows from left to right. Each of the connections has an associated
connection strength called a weight.

 Feed-forward Neural Network

 9

Feed-forward networks are also sometimes called perceptrons, a name given to this
architecture in the 1950’s. There are also more complex architectures called recurrent
networks in which feedback connections are present.

In feed-forward networks, patterns are learned through an iterative training process of
adjusting the weights of the network for each pattern in a training set of examples applied
to the input layer. Each iteration in the training process is called an epoch. Training is
complete when the process converges on a set of weights which gives an acceptably low
error on the output for all elements in the training set. In this way the network actually
learns the statistics of the training set and is capable of generalization, the ability to
correctly process patterns not in the training set, when in actual use.

Each neuron (sometimes called a processing element, PE), in the network is a very simple
processor indeed. See the example below.

jj

 Neuron

 10

It is basically a dot product of the input signal and weight vectors with an activation
threshold T and output limiter f. Notice that a weight wj can have an inhibitory or
excitatory effect depending on whether it is adjusted so that the product ajwj is a high
positive or negative value, respectively. Also note that if any input connection ajwj has a
very small value relative to all other input connections, it will have little or no effect on
the activation level of the neuron. The output limiter function f is often chosen to be the
sigmoid function because it contributes some highly desirable computational properties
during training. See the graph below. It is monotonically increasing, has limiting values
of 0 and 1 and 1 and has derivative f ′ = f(1 – f).

 y

0
0.2
0.4
0.6
0.8

1
1.2

-6 -4 -2 0 2 4 6

 Sigmoid Function

A typical sigmoid function is:

 1
 f(a) = -------------------
 1 + e-a

The training process for a feed-forward network is usually some variety of what is called
supervisory training, a process in which an external “teacher” provides the “right answer”
for each input pattern in the training set. There is also unsupervised training in which no
teacher is provided and internal control and local information provides results such as
clustering. Many supervised learning algorithms are available, the most popular being
backpropagation.

Backpropagation is a form of error-correcting learning in which the weights are adjusted
in proportion to the output error. The output error from a single node in the output layer
is

 ε = d – o ,

where o is the calculated output and d is the desired output.

 11

The weight change for each weight for a single output neuron is given by the following:

 Δw = η i δ ,

where η is a very small number called the learning rate to be discussed later, i is the input
activation for that connection and δ is the error gradient at that neuron. The error
gradient is defined as the derivative of the output limiter function (Recall that f ′ = f(1 –
f)) multiplied by the error at the output of the neuron.

 δ = f (1 – f)ε

If ε = d – o is positive, then the neuron output o is too low, so the weight is increased for
positive inputs and decreased for negative inputs. For negative error values, the opposite
action is taken.

The weight change calculation for each weight in the hidden layer has the same form as
the output layer

 Δw = η i δ ,

except that the error ε in the error gradient δ = f(1 – f)ε term must be calculated
differently since the actual network error appears only at the output layer. What is
needed is an error value at the output of each hidden layer neuron so that hidden layer
neurons can be trained in the same manner as the output neurons. This error value is
constructed from the errors “propagated” back from the output layer to the hidden layer
unit. Hence the name backpropagation. By the way, this reverse propagation of a signal
is not biologically plausible. Thus for the case of a hidden layer neuron, the value of ε
is

 ε = ∑ δw ,

where the sum is over all the connections to the hidden layer neuron from all output
neurons.

The backpropagation training process, as with most neural network training algorithms, is
an optimization search in weight space for an error minimum. The derivative comes into
play since we want the weight changes to be in the direction of the greatest rate of change
of the error with respect to the weights, a process called gradient descent. The learning
rate η is a very small number, typically in the range of 0.001 to 0.05 to reduce the weight
changes in each epoch to small values since the weight values sought are those which
work for all examples in the training set.

One of the problems with neural networks is the lack of explanatory capability. This
deficiency makes selling a client or management on a proposed application more
challenging than expert systems. Neural networks also have problems of long training

 12

times and local minima stalls. Many enhancements have been made to the basic
backpropagation algorithm to solve these problems. Some examples are as follows:

- dynamically adjusting the learning rate during training

- addition of a momentum term

- localization of learning rate to individual neurons

Given the training time problem, one might inquire about the use of a feedforward
network with no hidden layer. One layer perceptrons are limited in the type of functions
it can learn. With one hidden layer any continuous function can be represented and with
two hidden layers discontinuous functions can be represented.

Neural networks have been used to solve prediction, clustering, classification problems.

Neural Network Resources

International Neural Network Society
 http://www.inns.org/

IEEE Transactions on Neural Networks
 http://www.ieee-nns.org/

Connection Science
http://www.ingenta.com/journals/browse/tandf/ccos

Cognitive Science
 http://www.sciencedirect.com/cogsci

http://www.inns.org/
http://www.ieee-nns.org/
http://www.ingenta.com/journals/browse/tandf/ccos

 13

Module #4: Genetic Algorithms

Definition: A genetic algorithm (GA) is a problem solving approach inspired by biology
in which the space of potential problem solutions is searched.

GA’s differ from traditional optimization and search procedures in four ways:

1. GA’s operate on a coded representation of the parameter set and not directly on
the parameters themselves.

2. GA’s are searching the space with a population of points

3. GA’s use payoff (objective function) information and not derivatives

4. GA’s use probabilistic transition rules instead of deterministic rules

The population of candidate solutions is represented as chromosomes that are sequences
of genes each of which has a value. Successive generations of these chromosomes are
generated with reproduction for a given generation being a function of chromosome
fitness with the less fit not being passed to the next generation. GA’s require these
chromosomes to be coded as finite strings which are often binary. The basic operations
are reproduction, crossover and mutation.

The basic genetic algorithm process can be described as follows:

1. Problem description and design of solution representations

2. Randomly generate an initial population of candidate solutions

3. If a solution is good enough then stop.

4. Select the best candidate solutions from the population as parents for producing

the next generation.

5. Apply crossover operations and create the next generation

6. Go to step 3

We illustrate the algorithm with the problem of finding the maximum value of the
function g(x) = 32x – x2 over the interval [1,16] assuming a domain of integer values for
x.

 14

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 Graph of g(x) = 32x – x2

We choose a population size of six and randomly generate the following initial
population.

Label Chromosome string String value String fitness Fitness Ratio

X1 00111 7 175 19%
X2 00010 2 60 7
X3 01001 9 207 23
X4 01100 12 240 26
X5 00101 5 135 15
X6 00011 3 87 10
 ------- ------

 904 100

The string fitness is the value of g(x). Since we are interested in the maximum value of g,
we want the reproduction operator to favor the higher fitness values as candidates for
producing the next generation. This can be done by using fitness ratios. The fitness
ratios are computed by dividing each string fitness value by 904, the fitness total of all six
strings. These values can be used to bias the reproduction operator toward generating
higher fitness strings for the mating pool for the next generation using a roulette wheel in
which the slot sizes correspond to each string and its associated fitness value. Execution

 15

of the reproduction operator corresponds to the spinning of this weighted roulette wheel,
generating a string six times to produce the next generation mating pool, with each spin
producing the string associated with the slot at which it stops. Notice that this procedure
produces a new set of strings with the intended fitness bias.

19%

7%

23%26%

15%

10%

x1
x2
x3
x4
x5
x6

 Weighted Roulette Wheel

In our example, string x4 has a fitness value of 240 which represents 26% percent of the
total population fitness. Therefore, string x4 is given roulette wheel weight 26. Each spin
of the wheel gives string x4 with probably 0.26.

We now have six strings which are copies produced from the initial population by a
procedure designed to increase the average fitness. We now randomly pair these strings
for a process called crossover. Crossover involves string segment swapping between the
pairs. We can illustrate this process with the following example:

Suppose we have two strings.

 11111

 and

 10000

 16

The segment swapped is defined by a location on the string. Suppose this point is
between the third and fourth character in the string. Then the result of the crossover
would be the following two strings:

 11100

 and

 10011

The crossover point is randomly selected for each string pair. After this crossover
(mating) operation is carried out for each pair, we have six new strings which represent
the next generation population. In some cases a mutation operation is also applied at this
stage. Mutation means the random selection and change of a single bit position. Its
purpose is to help assure that the search process does not get stuck on a local optimum.
We can now assess the fitness of each string in this generation as we did for the initial
population. This iterative process is continued with average fitness improving each
generation until the population produces a near-optimal solution. Hundreds of
generations may be required.

GA’s have been used widely in optimization problems such as circuit layout and
scheduling, but they are computationally intensive and the conditions under which they
perform well remain research issues. The design of appropriate chromosome
representation in complex problems is crucial to success and requires careful engineering.

Genetic programming is closely related to GA’s. The primary difference lies with the
representations that are combined and mutated. In genetic programming these structures
are programs rather than bit strings. Program representations are expression trees that
can be in a language such as Lisp or they can be designed to represent objects in the
problem domain. As with GA’s, there are questions about the effectiveness of genetic
programming. The term evolutionary computation is being used to include the combined
fields of GA’s and genetic programming.

Genetic Algorithm Resources

Genetic and Evolutionary Computation Conference
 http://www-illigal.ge.uiuc.edu:8080/GECCO-2004/, a recent merger of the earlier
International Conference on Genetic Algorithms and the Conference on Genetic
Programming.

Evolutionary Computation
 http://www.aic.nrl.navy.mil/~aswu/ecj/

IEEE Transactions on Evolutionary Computation
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=
tec.xml&xsl=generic.xsl

http://www.aic.nrl.navy.mil/~aswu/ecj/
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tec.xml&xsl=generic.xsl
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tec.xml&xsl=generic.xsl

 17

Recommended Books

Mitchell, Melanie., An Introduction to Genetic Algorithms, MIT Press, Cambridge,
MA, 1996.

Fogel, David, Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, IEEE Press, Piscataway, N.J., 2000.

 18

Module #5: Fuzzy Logic

One might say that “traditional” numerical and even symbolic computing has a precision
and brittleness that fails to capture some of the fundamental aspects of human problem
solving processes. For example, expert problem solvers are quite comfortable dealing
with imprecise “soft” terms such as “low temperature” and “high pressure”. Since this
type of imprecision is clearly part of the problem solving process of experts, it would be
desirable to incorporate this capability into AI methods directly. Fuzzy logic was
developed for just that purpose. Fuzzy logic deals with degrees of set membership and
degrees of truth.

In classical set theory, a set A is defined in terms of elements of a universe U being either
a member of A or not a member of A. We could also express this definition in terms of a
set membership function m which maps the elements of U onto the two element set
{1,0}. That is,

For all elements in U

 m(x) = 1 if x is in A and

 m(x) = 0 if x is not in A

In a similar fashion, we can define fuzzy sets. A fuzzy set A of elements from a universe
U is defined by a membership function m that maps the elements of U into the interval
[0,1] of real numbers. We can express this definition as follows:

For all elements x in U

 m(x) = 1 if x is completely in A

 m(x) = 0 if no part of x is in A

 0 < m(x) < 1 if x is partially in A

For fuzzy sets, m is said to represent the degree of membership of x in A. Sets with
membership function values of only 0 and 1 are said to be crisp sets in fuzzy set lingo.

Fuzzy set membership functions could be represented many ways mathematically. For
practical computational efficiency purposes a popular representation is the piecewise
linear function. We illustrate with the example of high speed and low speed in the graph
below.

 19

 Fuzzy sets are also often represented as fit vectors.

High speed = (0.0/40, 0.0/45, 0.0/50, 0.0/57.5, 0.0/65, 0.5/70, 1.0/75)

Medium speed = (0.0/40, 0.0/45, 0.4/50, 1.0/57.5, 0.4/65, 0.0/70, 0.0/75)

Low speed = (1.0/40, 0.5/45, 0.0/50, 0.0/57.5, 0.0/65, 0.0/70, 0.0/75)

We can define fuzzy set operations analogous to crisp sets. Let A and B be fuzzy sets
over some universe U with membership functions mA(x) and mB(x) respectively. The
fuzzy set union of A and B, is defined as the set AUB with membership function

 mAUB(x) = max{mA(x), mB(x)}, where x ε U.

Similarly the intersection of fuzzy sets A and B is defined as A∩B with membership
function

 mA∩B(x) = min{mA(x), mB(x)}, where x ε U.

The fuzzy set complement of A is defined as A′ with membership function

 20

 mA′

 (x) = 1 – mA(x), for x ε U.

We illustrate these operations with the example speed and temperature fuzzy sets above.

High speed OR medium speed = (0.0/40, 0.0/45, 0.4/50, 1.0/57.5, 0.4/65, 0.5/70, 1.0/75)

Fuzzy set intersection

Low AND medium speed = (0.0/40, 0.0/45, 0.0/50, 0.0/57.5, 0.0/65, 0.0/70, 0.0/75)

Fuzzy set complement

NOT high speed = (1.0/40, 1.0/45, 1.0/50, 1.0/57.5, 1.0/65, 0.5/70, 0.0/75)

Fuzzy logic can be implemented in rule-based systems by providing support for rule
conditions and conclusions that are fuzzy sets. Fuzzy reasoning provides for more
flexibility and may allow for several options rather than a single conclusion from the
system, providing the basis for better decision-making judgment. In crisp rule based
systems, the rule condition is either true or false, and if true, the rule conclusion is taken
to be true. In fuzzy rule-based systems rules can fire partially. The rule condition
describes the degree to which the rule applies and the rule conclusion assigns a
membership function to each of the output variables. If the condition is true to some
degree of membership, then the conclusion is also true to the same degree. The condition
part and conclusion part can contain Boolean combinations. For example,

 IF speed is medium

 AND pressure is high

 THEN risk is high

 AND system is abnormal

The inferencing process involves several steps:

- mapping crisp inputs into the rule conditions,

 21

- partial firing of rules which have nonzero condition membership function values
under this mapping,

- combination of output variable membership functions and finally

- defuzzification of this resulting combination.

The result of final step of defuzzification is a crisp output that is a centroid value or
weighted average value computation, depending on whether the computer representation
of the membership function is the graph shown above (Mamdani-syle inference) or a
more computationally efficient internal representation (Sugeno-style inference),
respectively. (See following website for more details. http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/faqs/ai/fuzzy/part1) The
MATLAB Fuzzy Logic Toolbox (http://www.mathworks.com/products/fuzzylogic/) is
one of the most popular tools for fuzzy expert system building.

The use of fuzzy rules can substantially reduce the total number of rules in an expert
system. However, a downside is that the resulting knowledge base requires a time
consuming stage of performance tuning which involves adjusting the fuzzy sets and rules.

Fuzzy Logic Resources

IEEE Transactions on Fuzzy Systems
http://ieee-cis.org/pubs/fts

International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
http://www.worldscinet.com/ijufks/ijufks.shtml

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/faqs/ai/fuzzy/part1
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/faqs/ai/fuzzy/part1
http://ieee-cis.org/pubs/fts
http://www.worldscinet.com/ijufks/ijufks.shtml

 22

Module #6: Emerging AI Technologies

Soft Computing

Soft computing is a label that can be given to a computational technique that is tolerant of
imprecision and uncertainty. Therefore, fuzzy logic, neural networks, genetic algorithms
and probabilistic reasoning in expert systems that have been discussed in the previous
sections certainly qualify. However, it is important to recognize that soft computing is
not simply a label for a collection of AI technologies but is viewed as an emerging new
paradigm within which existing techniques can be combined to form more effective
problem solving approaches. See website http://www.soft-computing.de/def.html.

 Soft Computing Resources

Journal of Multiple-Valued Logic and Soft Computing
http://www.oldcitypublishing.com/MVLSC/MVLSC.html

Applied Soft Computing Journal
http://www.ingenta.com/journals/browse/els/15684946

World Federation of Soft Computing
 http://www.softcomputing.org/

Applied Soft Computing
 http://www.eeaax.polytechnique.fr/marc/ASC.html

Berkeley Initiative in Soft Computing
http://www-bisc.cs.berkeley.edu/

Chat Bots

Chatbots (frequently called bots, and sometimes called v-people or synthetic characters)
represent an emerging technology of human-computer interaction. They basically
implement a natural language interface which is designed to simulate conversation by
using a variety of methods. Recent advances in computer graphics have made it possible
to embody these bots as realistic “synthetic characters”, not only for interactive games,
but for providing Internet information services, training and web site guides. In response
to user input questions or statements, the bot consults its knowledge base and formulates
a reply. These replies are functions of pattern matching algorithms which recognize key
words, phrases and sometimes sentences. Some sophisticated bots employ learning

http://www.soft-computing.de/def.html
http://www.oldcitypublishing.com/MVLSC/MVLSC.html
http://www.eeaax.polytechnique.fr/marc/ASC.html
http://www-bisc.cs.berkeley.edu/

 23

algorithms that allow the bot to remember input sequences of information for later
responses and hence expand its knowledge base for future interaction sessions.

There is evidence that attractive bots on web sites can significantly increase the site hit
rate. Therefore, it is not surprising that chat bot technology is beginning to be
commercialized with the emergence of bot customizing and hosting services for
commercial websites. Research on the benefits of interactive online characters makes the
case for the importance of what is called “social intelligence”, exhibited as facial and
emotional expressions, gestures and speech and language abilities in human-computer
interactions, citing the following ten benefits of synthetic online characters - Byron
Reeves paper: http://www.stanford.edu/~reeves/

- Characters make explicit the social responses that are inevitable.

- Interactive characters are perceived as real social actors.

- Interactivity increases the perceived realism and effectiveness of characters.

- Interactive characters increase trust in information sources.

- Characters have personalities that can represent brands.

- Characters can communicate social roles.

- Characters can effectively express and regulate emotions.

- Characters can effectively display important social manners.

- Characters can make interfaces easier to use.

- Characters are well liked.

Interest in conversational interfaces dates back to the mid twentieth century. The famous
Turing Test for machine intelligence was proposed as standard for assessing whether a
computer system had attained intelligence equivalent to humans. In this test the
computer system and a human are available for communication in separate rooms.
Which room contains which is not revealed to the person allowed to communicate. If
after some period of communication the person communicating believes the room
containing the computer is a human being, the test would be passed. To encourage the
development of conversational interfaces, the Loebner Prize has recently been established
and an annual competition based on the Turing Test is held. (See web sites
http://www.loebner.net/Prizef/loebner-prize.html and http://www.alicebot.org/). No
system has yet won the Prize, but annual awards are given to the best system each year as

http://www.loebner.net/Prizef/loebner-prize.html

 24

ranked in several categories. A bot named ALICE built using the Artificial Intelligence
Mark Up Language (AIML) has won the annual award. ALICEbot technology is today’s
version of a famous natural language interface called ELIZA built in 1966 that was
designed to simulate a psychotherapist. It was a rather simple conversational interface
that responded to users by asking leading questions triggered by nouns in the user input.
For example, if the user mentioned something about their mother, the system might
respond with “Tell me more about your mother.”. ELIZA’s developers, Weizenbaum and
Colby, were very surprised at the high level of intelligence that users attributed to the
system as indicated by the personal revelations these sessions elicited. However, they did
not see this surprising user reaction as a reason for celebration but rather distain because
of the simplicity of the system. See web sites http://www.linux-mag.com/1999-
06/perl_01.html and http://www.eliza.

The recent resurgence of interest in chat bots has produced a variety of tools and
resources for building these bots. Some examples are listed below.

 Chat Bot Resources

Oddcast: Markets conversational character products
http://www.oddcast.com

Extempo Systems: Develops synthetic character technologies
http://www.extempo.com

A.L.I.C.E. Foundation: Source of public domain tools and information about Alicebots
http://www.alicefoundation.org

Speech Synthesis Markup Language (SSML)
 http://www.w3.org/speech-synthesis/

Artificial Intelligence Markup Language (AIML)
 http://www.aiml.org

Microsoft Agent Technology
 http://www.msagentring.org

Prendinger, Helmut and Mitsuru Ishizuka (Editors), Life-Like Characters: Tools,
Affective Functions, and Applications, Springer, 2004.

Plantec, Peter, Virtual Humans: Creating the Illusion of Personality, American
Management Association, 2004. (Includes CD with software tools).

Leonard, Andrew, BOTS: The Origin of New Species, Hardwired, San Francisco, 1997.
(A history of the bot-creating culture)

http://www.linux-mag.com/1999-06/perl_01.html
http://www.linux-mag.com/1999-06/perl_01.html
http://www.eliza/
http://www.oddcast.com/
http://www.extempo.com/
http://www.alicefoundation.org/
http://www.msagentry.org/chars
http://www.w3.org/speech-synthesis/
http://www.aiml.org/

 25

Course Summary

Artificial intelligence technologies have found increasing engineering applications in
real-life industrial situations. Many organizations have been successful in using
intelligent systems in their day to day operations. This course has presented a basic
introduction to four of the most popular artificial intelligence techniques of expert
systems, neural networks, genetic algorithms and fuzzy logic together with a discussion
of the emerging AI technologies of soft computing and chat bot agents.

General AI Resources

American Association for Artificial Intelligence (AAAI)
 http://www.aaai.org

International Journal of Human-Machine Studies
gort.ucsd.edu/newjour/i/msg02351.html

IEEE Transactions on Intelligent Systems
 http://www.computer.org/intelligent/

AI Magazine
http://www.aaai.org/Magazine/magazine.html

Applied Artificial Intelligence Journal
 http://www.tandf.co.uk/journal/titles/08839514.as

Negnevitsky, Michael, Artificial Intelligence: A Guide to Intelligent Systems,
Addison-Wesley, Pearson Education Limited, Essex, England, 2005.

Russell, Stuart and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice
Hall, Second Edition, 2003.

Resources for Engineering Applications of AI

Artificial Intelligence in Engineering, An International Journal,
http://www.ingenta.com/journals/browse/els/09541810

http://www.aaai.org/
http://www.computer.org/intelligent/
http://www.tandf.co.uk/journal/titles/08839514.as
http://www.ingenta.com/journals/browse/els/09541810

 26

Engineering Applications of Artificial Intelligence, The International Journal of
Intelligent Real-Time Automation.
http://www.elsevier.com/wps/find/journaldescription.cws_home/975.........

AIEDAM: Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, a journal carrying articles of both theoretical and practical interest.
http://www.cs.wpi.edu/~aiedam/index.html

Artificial Neural Networks In Engineering, (ANNIE) conference
http://web.umr.edu/~annie/

International Conference on the Applications of Artificial Intelligence to Civil and
Structural Engineering, http://mason.gmu.edu/~tarcisze/conferences..htm

Hopgood, Adrian A., “Knowledge-Based Systems for Engineers and Scientists”, CRC
Press, Boca Raton, Florida, 1993.

Loi Lei Lai, Intelligent System Applications in Power Engineering: Evolutionary
Programming and Neural Networks, John Wiley & Sons, 1998.

Thomas Quantrille and Y. Liu, Artificial Intelligence in Chemical Engineering,
Elsevier, 1992.

H.E. Rauch (Editor) “Artificial Intelligence in Real-Time Control”, Proceedings of the
IFAC Symposium, Kuala Lumpur, Malaysia, September 1997, Elsevier.

http://www.elsevier.com/wps/find/journaldescription.cws_home/975
http://www.cs.wpi.edu/~aiedam/index.html
http://web.umr.edu/~annie/

	Course Content

