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Artificial Intelligence: Technologies for Smart 

Systems Design 
 

Warren T. Jones, Ph.D., P.E. 
    
 
 

Course Content 
 
 

Module #1: Introduction and Definitions 
 
What is Artificial Intelligence?  The definition given by the American Association for 
Artificial Intelligence is “the scientific understanding of the mechanisms underlying 
thought and intelligent behavior and their embodiment in machines.” 

The term “artificial intelligence” is more likely to conjure up a vision of the science 
fiction robotic takeover of the earth than the more mundane and useful “smart” software 
functions that are becoming increasingly commonplace in engineering systems and 
equipment.  Not surprisingly, the AI field contains elements of both of these components 
with the former being labeled “strong AI” and the latter “weak AI”. The goal of the 
everyday “smart system engineer” is the building of systems that may exhibit intelligent 
behavior that can be leveraged to increase the productivity of the human users of the 
system, with little interest in the more exotic “strong AI” issues.  We will not dwell here 
on the philosophical issues.  
 
The genesis of the AI field is generally recognized as being the seminal paper in 1950 by 
Alan Turing entitled “Computing Machinery and Intelligence”.  Although the actual term 
“artificial intelligence” was not coined until six years later at a Dartmouth summer 
workshop, he was the first to articulate a complete vision of the field.  Special purpose 
programming languages LISP and PROLOG were developed early in the field for non-
numeric symbol processing applications development.  
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Module #2:  Expert Systems 
 
 
Rule-based Expert Systems 
 
Expert systems technology emerged in the late 1970’s when it became clear that the early 
AI approaches of general search mechanisms over large state spaces for solving broad 
classes of problems did not scale up from small problems to more complex practical 
applications.  These disappointing results led to the realization that more practical results 
could be achieved building systems with narrow task-specific domain knowledge.  
 
The name “expert systems” is derived from the term “knowledge-based expert systems”. 
They are sometimes referred to as symbolic processors since they process linguistic 
symbols and lists rather that numerical data.  These systems are built by capturing task-
specific expertise and employ a reasoning system which imitates the human expert 
problem solving capabilities.  Task-specific expertise is knowledge acquired from 
training, reading and experience and includes the following: 
 

- Facts about the problem area 
 
- Theoretical knowledge about the problem area 

 
- Rigid rules and procedures regarding the problem 
 
- “Rules of thumb” (heuristics) guidelines of what to do in specific problem 

situations 
 

- Overarching strategies for problem solutions 
 
- Problem area meta-knowledge (knowledge about knowledge) 

 
Experts are known to make better and faster decisions in solving complex problems than 
non experts and becoming an expert in a given area typically takes several years. 
Expertise is a somewhat nebulous term and we typically refer to a person’s level of 
expertise.  The distribution of expertise appears to be the same for any type of 
knowledge.  The upper ten percent has a performance level of about three times higher 
than the average and thirty times higher than the lower ten percent.  This information 
implies that the overall effectiveness of human expertise in a given problem area can be 
greatly increased if the expertise of this upper ten percent can be made accessible to the 
others. Expert behavior seems to be characterized by the following activities: 
 

- Recognition and problem formulation 
 
- Rapid proper problem solving 
 
- Explaining the solution 
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- Learning from experience 
 
- Reorganizing knowledge periodically 

 
- Knowing when to break the rules with exceptions 
 
- Determining relevance of their expertise 
 
- Degrading gracefully at the boundaries of their expertise 

 
The goal of expert system development is to capture as much of the above behavior as 
possible.  Items two and three above were the focus of early systems development. Expert 
systems technology represents opportunities for productivity increases in many ways.  
The technology can be used in the following ways: 
 

- to capture scarce expertise 
 
- to train future experts 

 
- to provide 24/7 access to expertise 

 
- to provide access in remote locations if needed 

 
- to provide higher quality advice in some cases where the integration of the 

knowledge of several experts is built into the system 
 

- to solve problems in areas that are hazardous to humans 
 
 
Knowledge acquisition from experts turns out to be a complex process and is sometimes 
called the “bottleneck” of expert systems development.  The acquired knowledge is 
frequently represented in the form of rules of the form IF (condition) THEN (conclusion). 
Hence the name Rule-Based Expert Systems.  
 
For example, 
 
IF (car won’t start), THEN (check the battery). 
 
A knowledge base can contain hundreds or sometimes thousands of these rules.  This 
knowledge can be obtained in a variety of ways by a knowledge engineer.  Manual 
methods are usually some type of interviewing process designed to extract knowledge 
from one or more experts.  There are knowledge acquisition methods approaching full 
automation in which rule induction systems generate rules from large collections of 
domain data, when available.   
 



 4 

When completed, a knowledge base and a current collection of facts are used by the 
inference engine to produce a recommended solution to the problem situation represented 
by the input factual data.  Each fact is matched to the IF part of a rule. When a match is 
made, the rule is said to “fire” and the THEN part of the rule is executed.   This matching 
and firing process for the input data produces “inference chains”.   
 
Inference chains can be produced by either “forward chaining” or “backward chaining”.  
Forward chaining is a strategy for producing whatever can be inferred from the 
knowledge base and the input data and is useful for analysis and interpretation.  
Backward chaining begins with a hypothetical conclusion and then looks for facts to 
support it.  This strategy is usually used for diagnostic problems.  Many expert system 
development environments support both forward and backward chaining. 
 
The basic components of an expert system are shown below.  Expert development shells, 
which provide all the components except for the knowledge base and database for a given 
application, are available from commercial vendors.  With this design the same shell can 
be used to develop systems for many different problem domains. 
 

                                   
                                       Expert Systems Components 
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The following example will be used to illustrate the forward and backward chaining 
process: 
 
Suppose the data base contains the two facts 
 
                                                    A is true  
 
                                                    B is true 
 
and the following knowledge base of three rules. 
 
                                    Rule 1:  IF A and B, THEN C 
 
                                    Rule 2:  IF B and C, THEN D 
 
                                    Rule 3:  IF D, THEN G 
 
Forward chaining is data-driven and begins with the available information.  Since it is 
known that A and B are true, it begins with one of them and searches for a rule that 
includes A in the IF side.  It finds Rule 1 and notes that in order for this rule to fire it also 
needs information about B.  Since B is also known to be true, Rule 1 fires and C is now 
added to the data base as true.  Given C is now true it looks for a rule with C in the IF 
part. It finds Rule 2 and also notes that since B is in the data base as true, Rule 2 fires 
adding D to the data base as true.  Given that D is true, it fires Rule 3 giving G is true. 
 
Backward chaining is goal-driven.  That is, the system begins with a hypothesis or goal in 
the THEN part of a rule and seeks evidence to support it.  In our knowledge base the goal 
is G in Rule 3.  The system will first check the data base to see if G is there.  Since this is 
not the case, the system will check the IF part of Rule 3 and note that G will be true if D 
is true. Then it will seek a rule with a conclusion of D.  This is the case for Rule 2.  For D 
to be true in Rule 2, both B and C must be true. B is true in the data base but C is not.  
However, there is a Rule 1 with a conclusion of C. Since both A and B are in the 
database, when Rule 1 fires our evidence is now complete, and we can conclude that G is 
true. Many expert system development tools can provide explanatory information like the 
above to provide the reasoning path to the conclusion.  
  
In this example the rules are either true or false implying the knowledge is exact.  In real 
world situations human knowledge is frequently inexact for a variety of reasons and it is 
sometimes necessary to make decisions based on partial or incomplete information. 
Therefore, there is a need for inexact inference methods that allow the combination of  
imprecise data from many sources.  The use of certainty factors is a popular approach to 
dealing with uncertainty in the knowledge base. It was first used in one of the early 
successful expert systems called MYCIN for the diagnosis of blood infections and 
meningitis. 
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Certainty factors provide a way for representing “degrees of belief”.  The range of 
certainty factors is from -1 (definitely false) to +1 (definitely true).  Positive values 
indicate the degrees of belief and negative values represent the degree of disbelief.  For 
example, an expert might indicate that some evidence is probably true and assign a 
certainty factor of 0.6 to this evidence.  
 
Certainty factors are based on the two functions: 
 
                                       MB(H,E), measure of belief 
 
                                     MD(H,E), measure of disbelief 
 
These functions reflect the degree in which belief in hypothesis H would be increased 
given support for E is observed and the degree to which disbelief in hypothesis H would 
be reduced given the same evidence E.  The range of MB(H,E) and MD(H,E) is between 
0 and 1.  Some data may increase the strength of belief, but conversely some data may 
raise the level of disbelief.  The certainty factor is defined in terms of these two functions 
as follows: 
 
 
 
                        MB(H, E) – MD(H, E) 
        cf  =   --------------------------------------- 
                    1 – min [MB(H, E), MD(H, E)] 
 
 
 
Certainty factors can be used to express the fact that a given condition may lead to more 
than one possible conclusion.  For example, 
 
                                                   IF    A  
  
                                                  THEN B [cf 0.8] 
 
                                                             C [cf 0.3] 
 
The inference engine incorporates methods for propagating certainty factors through the 
reasoning chain. Notice that certainty factors do not have to add up to 1.0 as in the case of 
probabilities. 
 
Another way to incorporate inexact information in the system is by use of Bayesian 
reasoning which makes requires conditional probabilities. The Bayesian approach also 
requires conditional independence of evidence for both a hypothesis and its negation as 
well as reliable statistical data to establish prior probabilities for each hypothesis.  A third 
approach using fuzzy expert systems is discussed in the later Fuzzy Logic section. 
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CLIPS  (http://www.ghg.net/clips/CLIPS.html) is a popular public domain expert system 
building tool maintained by NASA.  Jess is a rule engine for the JavaTM platform.  
(http://herzberg.ca.sandia.gov/jess/) 
 
Expert systems have been used in a wide variety of applications including diagnosis, 
interpretation, prediction, design, planning, monitoring and control. 
 
Reference 
 
Durkin, J., Expert Systems Design and Development, Prentice Hall, Englewood Cliffs, 
NJ, 1994. 

 
 

http://www.ghg.net/clips/CLIPS.html
http://herzberg.ca.sandia.gov/jess/
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Module #3:  Neural Networks  
 
Neural networks represent a radical departure from traditional computing.  They consist 
of networks of very small processors that are simple models of neurons in the brain.  The 
information and knowledge of interest is stored in the dense interconnection structure, not 
in the discrete memory locations of traditional computing.  Neural networks are pattern 
recognition systems that can be trained to recognize patterns in a noisy input 
environment.  The architecture of these systems is frequently biologically inspired but not 
all neural network architectures and processes are biologically plausible.  In contrast with 
expert systems, which are symbol processors, neural networks can be called subsymbolic 
since they operate at the signal processing level.  Connectionism, parallel distributed 
computation and neural computation are other terms that are sometimes used for this 
field.  
 
Neural networks are usually organized into layers of neurons.  In feed-forward networks 
each neuron accepts input only from neurons in the preceding layer.  We say that a 
network is fully connected if each neuron has inputs from all units in the preceding layer. 
See example network below.   Input signals are applied to the input layer on the left and 
signal activation flows from left to right.  Each of the connections has an associated 
connection strength called a weight.  

 
 
                                Feed-forward Neural Network 
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Feed-forward networks are also sometimes called perceptrons, a name given to this 
architecture in the 1950’s.  There are also more complex architectures called recurrent 
networks in which feedback connections are present.  
 
In feed-forward networks, patterns are learned through an iterative training process of 
adjusting the weights of the network for each pattern in a training set of examples applied 
to the input layer.  Each iteration in the training process is called an epoch.  Training is 
complete when the process converges on a set of weights which gives an acceptably low 
error on the output for all elements in the training set.  In this way the network actually 
learns the statistics of the training set and is capable of generalization, the ability to 
correctly process patterns not in the training set, when in actual use.   
 
Each neuron (sometimes called a processing element, PE), in the network is a very simple 
processor indeed.  See the example below. 
 
 
                
jj 
             

     
                                                           Neuron 
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It is basically a dot product of the input signal and weight vectors with an activation 
threshold T and output limiter f.   Notice that a weight wj can have an inhibitory or 
excitatory effect depending on whether it is adjusted so that the product ajwj is a high 
positive or negative value, respectively.  Also note that if any input connection ajwj has a 
very small value relative to all other input connections, it will have little or no effect on 
the activation level of the neuron.  The output limiter function f is often chosen to be the 
sigmoid function because it contributes some highly desirable computational properties 
during training.  See the graph below.  It is monotonically increasing, has limiting values 
of 0 and 1 and 1 and has derivative f ′ =  f(1 – f).  
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                                                  Sigmoid Function 
         
A typical sigmoid function is: 
 
                                              1 
                           f(a) = ------------------- 
                                       1   +   e-a 
 
 
The training process for a feed-forward network is usually some variety of what is called 
supervisory training, a process in which an external “teacher” provides the “right answer” 
for each input pattern in the training set.  There is also unsupervised training in which no 
teacher is provided and internal control and local information provides results such as 
clustering.  Many supervised learning algorithms are available, the most popular being 
backpropagation. 
 
Backpropagation is a form of error-correcting learning in which the weights are adjusted 
in proportion to the output error.  The output error from a single node in the output layer 
is  
 
                                  ε  = d  – o   , 
 
where o is the calculated output and d is the desired output.  
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The weight change for each weight for a single output neuron is given by the following: 
 
                                Δw  =  η i  δ , 
 
where η is a very small number called the learning rate to be discussed later, i is the input 
activation for that connection and δ is the error gradient at that neuron.  The error 
gradient is defined as the derivative of the output limiter function  (Recall that f ′ = f(1 – 
f) ) multiplied by the error at the output of the neuron.   
  
                              δ =  f (1 – f)ε 
 
If ε = d – o is positive, then the neuron output o is too low, so the weight is increased for 
positive inputs and decreased for negative inputs.  For negative error values, the opposite 
action is taken.  
 
The weight change calculation for each weight in the hidden layer has the same form as 
the output layer  
 
                           Δw  =  η i  δ , 
 
except that the error ε in the error gradient δ = f(1 – f)ε term must be calculated 
differently since the actual network error appears only at the output layer.  What is 
needed is an error value at the output of each hidden layer neuron so that hidden layer 
neurons can be trained in the same manner as the output neurons.  This error value is  
constructed from the errors “propagated” back from the output layer to the hidden layer 
unit.   Hence the name backpropagation.  By the way, this reverse propagation of a signal 
is not biologically plausible.   Thus for the case of a hidden layer neuron,  the value of ε 
is 
  
                               ε = ∑ δw , 
 
where the sum is over all the connections to the hidden layer neuron from all output 
neurons.    
 
The backpropagation training process, as with most neural network training algorithms, is 
an optimization search in weight space for an error minimum.  The derivative comes into 
play since we want the weight changes to be in the direction of the greatest rate of change 
of the error with respect to the weights, a process called gradient descent.  The learning 
rate η is a very small number, typically in the range of 0.001 to 0.05 to reduce the weight 
changes in each epoch to small values since the weight values sought are those which 
work for all examples in the training set.  
 
One of the problems with neural networks is the lack of explanatory capability. This 
deficiency makes selling a client or management on a proposed application more 
challenging than expert systems. Neural networks also have problems of long training 
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times and local minima stalls.  Many enhancements have been made to the basic 
backpropagation algorithm to solve these problems. Some examples are as follows: 
 

- dynamically adjusting the learning rate during training 
 
- addition of a momentum term 

 
- localization of learning rate to individual neurons 

 
Given the training time problem, one might inquire about the use of a feedforward 
network with no hidden layer.  One layer perceptrons are limited in the type of functions 
it can learn.  With one hidden layer any continuous function can be represented and with 
two hidden layers discontinuous functions can be represented.  
 
Neural networks have been used to solve prediction, clustering, classification problems. 
 
 
Neural Network Resources 
 
International Neural Network Society 
 http://www.inns.org/ 
 
IEEE Transactions on Neural Networks 
 http://www.ieee-nns.org/ 
 
Connection Science  
http://www.ingenta.com/journals/browse/tandf/ccos 
 
Cognitive Science 
 http://www.sciencedirect.com/cogsci  
 
 

http://www.inns.org/
http://www.ieee-nns.org/
http://www.ingenta.com/journals/browse/tandf/ccos
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Module #4:  Genetic Algorithms 
 
 
Definition: A genetic algorithm (GA) is a problem solving approach inspired by biology 
in which the space of potential problem solutions is searched.   
 
GA’s differ from traditional optimization and search procedures in four ways: 
 

1. GA’s operate on a coded representation of the parameter set and not directly on 
the parameters themselves. 

 
2. GA’s are searching the space with a population of points 

 
3. GA’s use payoff (objective function) information and not derivatives 
 
4. GA’s use probabilistic transition rules instead of deterministic rules 

 
The population of candidate solutions is represented as chromosomes that are sequences 
of genes each of which has a value.  Successive generations of these chromosomes are 
generated with reproduction for a given generation being a function of chromosome 
fitness with the less fit not being passed to the next generation.  GA’s require these 
chromosomes to be coded as finite strings which are often binary. The basic operations 
are reproduction, crossover and mutation. 
 
The basic genetic algorithm process can be described as follows:  
 

1. Problem description and design of solution representations 
 
2. Randomly generate an initial population of candidate solutions  

 
3. If a solution is good enough then stop. 
 
4. Select the best candidate solutions from the population as parents for producing 

the next generation. 
 
5. Apply crossover operations and create the next generation 
 
6. Go to step 3 

 
We illustrate the algorithm with the problem of finding the maximum value of the 
function g(x) = 32x – x2 over the interval [1,16] assuming a domain of integer values for 
x.   
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                               Graph of g(x) = 32x – x2 
                 
 
We choose a population size of six and randomly generate the following initial 
population. 
 
 
Label     Chromosome string        String value            String fitness         Fitness Ratio 
 
X1                00111                              7                               175                      19% 
X2                00010                              2                                 60                        7 
X3                01001                              9                               207                      23 
X4                01100                            12                               240                      26 
X5                00101                              5                               135                      15 
X6                00011                              3                                87                       10 
                                                                                         -------                     ------ 

  904                      100 
 
The string fitness is the value of g(x). Since we are interested in the maximum value of g, 
we want the reproduction operator to favor the higher fitness values as candidates for 
producing the next generation.  This can be done by using fitness ratios.  The fitness 
ratios are computed by dividing each string fitness value by 904, the fitness total of all six 
strings.  These values can be used to bias the reproduction operator toward generating 
higher fitness strings for the mating pool for the next generation using a roulette wheel in 
which the slot sizes correspond to each string and its associated fitness value.  Execution 
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of the reproduction operator corresponds to the spinning of this weighted roulette wheel, 
generating a string six times to produce the next generation mating pool, with each spin 
producing the string associated with the slot at which it stops.  Notice that this procedure 
produces a new set of strings with the intended fitness bias.   
 
  

19%
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23%26%

15%

10%
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x6

 
 
                          Weighted Roulette Wheel 
 
                            
 
 
 
In our example, string x4 has a fitness value of 240 which represents 26% percent of the 
total population fitness.  Therefore, string x4 is given roulette wheel weight 26. Each spin 
of the wheel gives string x4 with probably 0.26.  
 
We now have six strings which are copies produced from the initial population by a 
procedure designed to increase the average fitness.  We now randomly pair these strings 
for a process called crossover.  Crossover involves string segment swapping between the 
pairs.  We can illustrate this process with the following example: 
 
Suppose we have two strings. 
 
                                                               11111 
    
                                                                 and  
 
                                                              10000 
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The segment swapped is defined by a location on the string.  Suppose this point is 
between the third and fourth character in the string.  Then the result of the crossover 
would be the following two strings: 
 
                                                               11100 
 
                                                                 and  
 
                                                              10011 
 
The crossover point is randomly selected for each string pair.  After this crossover 
(mating) operation is carried out for each pair, we have six new strings which represent 
the next generation population. In some cases a mutation operation is also applied at this 
stage.  Mutation means the random selection and change of a single bit position. Its 
purpose is to help assure that the search process does not get stuck on a local optimum. 
We can now assess the fitness of each string in this generation as we did for the initial 
population.  This iterative process is continued with average fitness improving each 
generation until the population produces a near-optimal solution.  Hundreds of 
generations may be required.  
 
GA’s have been used widely in optimization problems such as circuit layout and 
scheduling, but they are computationally intensive and the conditions under which they 
perform well remain research issues.  The design of appropriate chromosome 
representation in complex problems is crucial to success and requires careful engineering. 
  
Genetic programming is closely related to GA’s. The primary difference lies with the 
representations that are combined and mutated. In genetic programming these structures 
are programs rather than bit strings.  Program representations are expression trees that 
can be in a language such as Lisp or they can be designed to represent objects in the 
problem domain.  As with GA’s, there are questions about the effectiveness of genetic 
programming.   The term evolutionary computation is being used to include the combined 
fields of GA’s and genetic programming.  
 
Genetic Algorithm Resources 
 
Genetic and Evolutionary Computation Conference 
 http://www-illigal.ge.uiuc.edu:8080/GECCO-2004/, a recent merger of the earlier 
International Conference on Genetic Algorithms and the Conference on Genetic 
Programming.   
 
Evolutionary Computation 
 http://www.aic.nrl.navy.mil/~aswu/ecj/ 
 
IEEE Transactions on Evolutionary Computation 
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=
tec.xml&xsl=generic.xsl 

http://www.aic.nrl.navy.mil/~aswu/ecj/
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tec.xml&xsl=generic.xsl
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=pubs/transactions&file=tec.xml&xsl=generic.xsl
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Recommended Books  
 
Mitchell, Melanie., An Introduction to Genetic Algorithms, MIT Press, Cambridge, 
MA, 1996. 
 
Fogel, David, Evolutionary Computation: Toward a New Philosophy of Machine 
Intelligence, IEEE Press, Piscataway, N.J., 2000.  
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Module #5:  Fuzzy Logic 
 
One might say that “traditional” numerical and even symbolic computing has a precision 
and brittleness that fails to capture some of the fundamental aspects of human problem 
solving processes.  For example, expert problem solvers are quite comfortable dealing 
with imprecise “soft” terms such as “low temperature” and “high pressure”.  Since this 
type of imprecision is clearly part of the problem solving process of experts, it would be 
desirable to incorporate this capability into AI methods directly.  Fuzzy logic was 
developed for just that purpose.  Fuzzy logic deals with degrees of set membership and 
degrees of truth. 
  
In classical set theory, a set A is defined in terms of elements of a universe U being either 
a member of A or not a member of A.  We could also express this definition in terms of a 
set membership function m which maps the elements of U onto the two element set 
{1,0}. That is, 
 
For all elements in U 
 
                                              m(x) = 1 if x is in A and 
 
                                              m(x) = 0 if x is not in A 
 
In a similar fashion, we can define fuzzy sets.  A fuzzy set A of elements from a universe 
U is defined by a membership function m that maps the elements of U into the interval 
[0,1] of real numbers.  We can express this definition as follows: 
 
For all elements x in U 
 
                                      m(x) = 1 if x is completely in A 
 
                                       m(x) = 0 if no part of x is in A 
 
                                     0 < m(x) < 1 if x is partially in A 
 
For fuzzy sets, m is said to represent the degree of membership of x in A.  Sets with 
membership function values of only 0 and 1 are said to be crisp sets in fuzzy set lingo.  
 
Fuzzy set membership functions could be represented many ways mathematically.  For 
practical computational efficiency purposes a popular representation is the piecewise 
linear function. We illustrate with the example of high speed and low speed in the graph 
below.  
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  Fuzzy sets are also often represented as fit vectors.  
 
High speed =       (0.0/40, 0.0/45, 0.0/50, 0.0/57.5, 0.0/65, 0.5/70, 1.0/75)  
 
Medium speed = (0.0/40, 0.0/45, 0.4/50, 1.0/57.5, 0.4/65, 0.0/70, 0.0/75) 
  
Low speed =       (1.0/40, 0.5/45, 0.0/50, 0.0/57.5, 0.0/65, 0.0/70, 0.0/75) 
 
We can define fuzzy set operations analogous to crisp sets. Let A and B be fuzzy sets 
over some universe U with membership functions mA(x) and mB(x) respectively. The 
fuzzy set union of A and B, is defined as the set AUB with membership function 
 
            mAUB(x) = max{mA(x), mB(x)}, where x ε U. 
 
 
Similarly the intersection of fuzzy sets A and B is defined as A∩B with membership 
function 
 
             mA∩B(x) = min{mA(x), mB(x)}, where x ε U. 
 
 
The fuzzy set complement of A is defined as A′ with membership function  



 20 

 
             mA′

 (x) = 1 – mA(x), for x ε U. 
 
 
 
 
We illustrate these operations with the example speed and temperature fuzzy sets above. 
 
 
High speed OR medium speed  =  (0.0/40, 0.0/45, 0.4/50, 1.0/57.5, 0.4/65, 0.5/70, 1.0/75) 
 
 
Fuzzy set intersection 
 
Low AND medium speed  =  (0.0/40, 0.0/45, 0.0/50, 0.0/57.5, 0.0/65, 0.0/70, 0.0/75) 
 
 
Fuzzy set complement 
 
NOT high speed  =  (1.0/40, 1.0/45, 1.0/50, 1.0/57.5, 1.0/65, 0.5/70, 0.0/75) 
 
 
Fuzzy logic can be implemented in rule-based systems by providing support for rule 
conditions and conclusions that are fuzzy sets. Fuzzy reasoning provides for more 
flexibility and may allow for several options rather than a single conclusion from the 
system, providing the basis for better decision-making judgment. In crisp rule based 
systems, the rule condition is either true or false, and if true, the rule conclusion is taken 
to be true. In fuzzy rule-based systems rules can fire partially. The  rule condition 
describes the  degree to which the rule applies and the  rule conclusion assigns a 
membership function to each of the output variables.  If the condition is true to some 
degree of membership, then the conclusion is also true to the same degree.  The condition 
part and conclusion part can contain Boolean combinations. For example, 
 
                                               IF speed is medium 
 
                                              AND pressure is high 
 
                                             THEN risk is high 
 
                                            AND system is abnormal 
 
The inferencing process involves several steps: 
 

- mapping crisp inputs into the rule conditions, 
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- partial firing of rules which have nonzero condition membership function values 
under this mapping,  

 
- combination of output variable membership functions and finally 
 
-  defuzzification of this resulting combination.  

 
The result of final step of defuzzification is a crisp output that is a centroid value or 
weighted average value computation, depending on whether the computer representation 
of the membership function is the graph shown above (Mamdani-syle inference) or a 
more computationally efficient internal representation (Sugeno-style inference), 
respectively. (See following website for more details. http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/faqs/ai/fuzzy/part1) The  
MATLAB Fuzzy Logic Toolbox (http://www.mathworks.com/products/fuzzylogic/) is 
one of the most popular tools for fuzzy expert system building.  
 
The use of fuzzy rules can substantially reduce the total number of rules in an expert 
system.  However, a downside is that the resulting knowledge base requires a time 
consuming stage of performance tuning which involves adjusting the fuzzy sets and rules.  
 
Fuzzy Logic Resources 
 
IEEE Transactions on Fuzzy Systems 
http://ieee-cis.org/pubs/fts 
 
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 
http://www.worldscinet.com/ijufks/ijufks.shtml 
 
                         
  

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/faqs/ai/fuzzy/part1
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/faqs/ai/fuzzy/part1
http://ieee-cis.org/pubs/fts
http://www.worldscinet.com/ijufks/ijufks.shtml
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Module #6:  Emerging AI Technologies  
 
Soft Computing 
 
Soft computing is a label that can be given to a computational technique that is tolerant of 
imprecision and uncertainty.  Therefore, fuzzy logic, neural networks, genetic algorithms 
and probabilistic reasoning in expert systems that have been discussed in the previous 
sections certainly qualify.  However, it is important to recognize that soft computing is 
not simply a label for a collection of AI technologies but is viewed as an emerging new 
paradigm within which existing techniques can be combined to form more effective 
problem solving approaches. See website http://www.soft-computing.de/def.html.  
 
 Soft Computing Resources 
 
Journal of Multiple-Valued Logic and Soft Computing 
http://www.oldcitypublishing.com/MVLSC/MVLSC.html 
 
Applied Soft Computing Journal 
http://www.ingenta.com/journals/browse/els/15684946 
 
World Federation of Soft Computing 
 http://www.softcomputing.org/ 
 
Applied Soft Computing 
 http://www.eeaax.polytechnique.fr/marc/ASC.html 
 
Berkeley Initiative in Soft Computing 
http://www-bisc.cs.berkeley.edu/ 
 
 
 
 
Chat Bots 
 
Chatbots (frequently called bots, and sometimes called v-people or synthetic characters) 
represent an emerging technology of human-computer interaction. They basically 
implement a natural language interface which is designed to simulate conversation by 
using a variety of methods.  Recent advances in computer graphics have made it possible 
to embody these bots as realistic “synthetic characters”, not only for interactive games, 
but for providing Internet information services, training and web site guides.  In response 
to user input questions or statements, the bot consults its knowledge base and formulates 
a reply.  These replies are functions of pattern matching algorithms which recognize key 
words, phrases and sometimes sentences.  Some sophisticated bots employ learning 

http://www.soft-computing.de/def.html
http://www.oldcitypublishing.com/MVLSC/MVLSC.html
http://www.eeaax.polytechnique.fr/marc/ASC.html
http://www-bisc.cs.berkeley.edu/
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algorithms that allow the bot to remember input sequences of information for later 
responses and hence expand its knowledge base for future interaction sessions.  
 
There is evidence that attractive bots on web sites can significantly increase the site hit 
rate. Therefore, it is not surprising that chat bot technology is beginning to be 
commercialized with the emergence of bot customizing and hosting services for 
commercial websites.  Research on the benefits of interactive online characters makes the 
case for the importance of what is called “social intelligence”, exhibited as facial and 
emotional expressions, gestures and speech and language abilities in human-computer 
interactions, citing the following ten benefits of synthetic online characters -  Byron 
Reeves paper: http://www.stanford.edu/~reeves/ 
 
 

- Characters make explicit the social responses that are inevitable. 
 
- Interactive characters are perceived as real social actors. 

 
- Interactivity increases the perceived realism and effectiveness of characters. 
 
- Interactive characters increase trust in information sources. 

 
- Characters have personalities that can represent brands. 
 
- Characters can communicate social roles. 

 
- Characters can effectively express and regulate emotions. 
 
- Characters can effectively display important social manners. 

 
- Characters can make interfaces easier to use. 
 
- Characters are well liked. 

 
 

 
Interest in conversational interfaces dates back to the mid twentieth century.  The famous 
Turing Test for machine intelligence was proposed as standard for assessing whether a 
computer system had attained intelligence equivalent to humans.  In this test the 
computer system and a human are available for communication in separate rooms.  
Which room contains which is not revealed to the person allowed to communicate.  If 
after some period of communication the person communicating believes the room 
containing the computer is a human being, the test would be passed.  To encourage the 
development of conversational interfaces, the Loebner Prize has recently been established 
and an annual competition based on the Turing Test is held.  (See web sites 
http://www.loebner.net/Prizef/loebner-prize.html and http://www.alicebot.org/). No 
system has yet won the Prize, but annual awards are given to the best system each year as 

http://www.loebner.net/Prizef/loebner-prize.html
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ranked in several categories.  A bot named ALICE built using the Artificial Intelligence 
Mark Up Language (AIML) has won the annual award. ALICEbot technology is today’s 
version of a famous natural language interface called ELIZA built in 1966 that was 
designed to simulate a psychotherapist.  It was a rather simple conversational interface 
that responded to users by asking leading questions triggered by nouns in the user input.  
For example, if the user mentioned something about their mother, the system might 
respond with “Tell me more about your mother.”. ELIZA’s developers, Weizenbaum and 
Colby, were very surprised at the high level of intelligence that users attributed to the 
system as indicated by the personal revelations these sessions elicited.  However, they did 
not see this surprising user reaction as a reason for celebration but rather distain because 
of the simplicity of the system.  See web sites http://www.linux-mag.com/1999-
06/perl_01.html and http://www.eliza. 
 
The recent resurgence of interest in chat bots has produced a variety of tools and 
resources for building these bots. Some examples are listed below.  
 
 
 Chat Bot Resources 
 
  
Oddcast:  Markets conversational character products 
http://www.oddcast.com 
 
Extempo Systems:  Develops synthetic character technologies 
http://www.extempo.com 
 
A.L.I.C.E. Foundation: Source of public domain tools and information about Alicebots 
http://www.alicefoundation.org 
 
Speech Synthesis Markup Language (SSML) 
 http://www.w3.org/speech-synthesis/ 
 
Artificial Intelligence Markup Language (AIML) 
 http://www.aiml.org    
 
Microsoft Agent Technology 
 http://www.msagentring.org 
 
Prendinger, Helmut and Mitsuru Ishizuka (Editors), Life-Like Characters: Tools, 
Affective Functions, and Applications, Springer, 2004. 
 
Plantec, Peter, Virtual Humans: Creating the Illusion of Personality, American 
Management Association, 2004. (Includes CD with software tools). 
 
Leonard, Andrew, BOTS: The Origin of New Species, Hardwired, San Francisco, 1997. 
(A history of the bot-creating culture) 

http://www.linux-mag.com/1999-06/perl_01.html
http://www.linux-mag.com/1999-06/perl_01.html
http://www.eliza/
http://www.oddcast.com/
http://www.extempo.com/
http://www.alicefoundation.org/
http://www.msagentry.org/chars
http://www.w3.org/speech-synthesis/
http://www.aiml.org/
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Course Summary 
 
 
Artificial intelligence technologies have found increasing engineering applications in 
real-life industrial situations. Many organizations have been successful in using 
intelligent systems in their day to day operations. This course has presented a basic 
introduction to four of the most popular artificial intelligence techniques of expert 
systems, neural networks, genetic algorithms and fuzzy logic together with a discussion 
of the emerging AI technologies of soft computing and chat bot agents.  

 
General AI Resources 
 
American Association for Artificial Intelligence (AAAI) 
 http://www.aaai.org 
 
International Journal of Human-Machine Studies 
gort.ucsd.edu/newjour/i/msg02351.html 
 
IEEE Transactions on Intelligent Systems 
 http://www.computer.org/intelligent/ 
 
AI Magazine  
http://www.aaai.org/Magazine/magazine.html 
 
Applied Artificial Intelligence Journal 
 http://www.tandf.co.uk/journal/titles/08839514.as 
 
Negnevitsky, Michael, Artificial Intelligence: A Guide to Intelligent Systems, 
Addison-Wesley, Pearson Education Limited, Essex, England, 2005. 
 
Russell, Stuart and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice 
Hall, Second Edition, 2003.  
 
 

Resources for Engineering Applications of AI 
 
Artificial Intelligence in Engineering, An International Journal, 
http://www.ingenta.com/journals/browse/els/09541810 
 

http://www.aaai.org/
http://www.computer.org/intelligent/
http://www.tandf.co.uk/journal/titles/08839514.as
http://www.ingenta.com/journals/browse/els/09541810
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Engineering Applications of Artificial Intelligence, The International Journal of 
Intelligent Real-Time Automation. 
http://www.elsevier.com/wps/find/journaldescription.cws_home/975......... 
 
AIEDAM: Artificial Intelligence for Engineering Design, Analysis and 
Manufacturing, a journal carrying articles of both theoretical and practical interest. 
http://www.cs.wpi.edu/~aiedam/index.html 
 
Artificial Neural Networks In Engineering, (ANNIE) conference 
http://web.umr.edu/~annie/ 
 
International Conference on the Applications of Artificial Intelligence to Civil and 
Structural Engineering, http://mason.gmu.edu/~tarcisze/conferences..htm  
 
Hopgood, Adrian A., “Knowledge-Based Systems for Engineers and Scientists”, CRC 
Press, Boca Raton, Florida, 1993. 
 
Loi Lei Lai, Intelligent System Applications in Power Engineering: Evolutionary          
Programming and Neural Networks,  John Wiley & Sons, 1998. 
 
Thomas Quantrille and Y. Liu, Artificial Intelligence in Chemical Engineering, 
Elsevier, 1992.  
 
H.E. Rauch (Editor) “Artificial Intelligence in Real-Time Control”, Proceedings of the 
IFAC Symposium, Kuala Lumpur, Malaysia, September 1997, Elsevier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.elsevier.com/wps/find/journaldescription.cws_home/975
http://www.cs.wpi.edu/~aiedam/index.html
http://web.umr.edu/~annie/
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