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What Do Engineers and Architects Need to Know about Finite Element Methods? 

 
 

Course Outline 

 

Finite Element Method is a powerful engineering analysis tool, and has been widely used in 

engineering since it was introduced in the 1950s. This course presents the basic theory and 

simple application of Finite Element Method (FEM) along with common FEM terminology. The 

emphasis of this course is on the fundamental concepts of finite element analysis. A list of 

major commercial software using FEM is also presented in the course, along with their 

features and capabilities. This course includes a multiple-choice quiz at the end, which is 

designed to enhance the understanding of course materials.  

 

Learning Objectives 

 

At the conclusion of this course, the student will:  

 

1. Understand the concept of Finite Element Method (FEM);  

2. Recognize the important role played by FEM in today's engineering world; 

3. Understand the matrix operations used in FEM; 

4. Get familiar with the different types of finite elements; 

5. Get familiar with the terminology used in FEM; and 

6. Be able to use solve simple structural problems using FEM.  

 

Course Content 

 

In this course, there are many hypertext links to related information. The reader is 

encouraged to visit the content within these links to get familiar with the linked subject for 

better understanding of the course content. 

 

What Are Finite Element Method (FEM) and Finite Element Analysis (FEA)? 

 

Many engineering phenomena can be expressed by "governing equations" and "boundary 

conditions". The governing equations are often in the form of partial differential equations 

(PDE) or ordinary differential equations (ODE). From mathematical standpoint, Finite Element 

Method (FEM) is a numerical method used for solving a set of related differential equations 

such as 

 

 

 

 

 

 

 

 

 

 

 

 

From engineering standpoint, Finite Element Method (FEM) is a numerical method for solving 

a set of related equations by approximating continuous field variables as a set of field 

variables at discrete points (nodes). For structural problems, the related equations are 

equilibrium equations, and the field variables are nodal displacements and loads. 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/
http://www.google.com/search?hl=en&lr=&ie=UTF-8&oi=defmore&q=define:HYPERTEXT+LINK
http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Differential_equation
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Finite element solutions are achieved by either eliminating the differential equation 

completely (steady state problems), or rendering the PDE into an equivalent ordinary 

differential equation, which is then solved using standard techniques such as finite 

differences. Use of Finite Element Method in engineering to analyze physical systems is 

commonly known as finite element analysis (FEA).  

 

Why Use FEM? 

 

Many engineering problems have complicated geometry and boundary conditions, which 

makes it impossible to come up with a closed-form solution. Therefore, numerical methods 

such as Finite Element Method, Finite Strip Method, Finite Difference Method, Finite Volume 

Method, Boundary Element Method and Hybrid BE-FE Method were introduced to provide 

approximate solutions to complicated engineering problems through the use of a computer. 

Among the above-mentioned numerical methods, Finite Element Method is the most powerful 

and most popular, and often forms the core of many commercially available engineering 

analysis programs.  

 

Because FEM can be adapted to problems of great complexity and unusual geometry using 

grid or mesh, it is an extremely powerful tool for solving critical problems in heat transfer, 

fluid mechanics, electrostatics, and structural and mechanical systems. Furthermore, the 

availability of fast and inexpensive computers allows engineers and architects to solve daily 

engineering problems in a straightforward manner using Finite Element Method. 

 

Common Finite Element Terminology 

 

Domain - In mathematics, a domain is the set of independent variables for which a function 

is defined. In finite element analysis, a domain is a continuous system (region) over which 

the laws of physics govern. In structural engineering, a domain could be a beam or a 

complete building frame. In mechanical engineering, a domain could be a piece of machine 

parts or a thermal field. 

 

Governing Equations - The governing equations for a system are the equations derived 

from the physics of the system. Many engineering systems can be described by governing 

equations, which determine the system's characteristics and behaviors. 

 

Boundary Conditions – The boundary conditions of a function are values of the function at 

the edge of the range of some of its variables. Knowledge of some of the boundary conditions 

is needed to solve an engineering problem or to find an unknown function.  

 

Element – An element is a portion of the problem domain, and is typically some simple 

shape like a triangle or quadrilateral in 2D, or tetrahedron or rectangular solid in 3D.  

 

Node - A node is a point in the domain, and is often the vertex of several elements. A node 

is also called a nodal point. 

 

Mesh (Grid) - The elements and nodes, together, form a mesh (grid), which is the central 

data structure in FEA.  

 

Mesh Generation – Most FEA software automatically generates refined grid or mesh to 

achieve more accurate results. For large scale or complex finite element analysis, it is often 

imperative for computers to generate finite element mesh automatically. There are many 

different algorithms for automatic mesh generation. Click here to see some automatically 

generated mesh samples. 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/
http://www.fact-index.com/d/di/differential_equation.html
http://www.fact-index.com/d/di/differential_equation.html
http://www.fact-index.com/f/fi/finite_element_analysis.html
http://mathworld.wolfram.com/Closed-FormSolution.html
http://en.wikipedia.org/wiki/Finite_Element_Method
http://en.wikipedia.org/wiki/Finite_strip_method
http://en.wikipedia.org/wiki/Finite_Difference_Method
http://mathworld.wolfram.com/FiniteVolumeMethod.html
http://mathworld.wolfram.com/FiniteVolumeMethod.html
http://www.boundary-element-method.com/
http://www.andrew.cmu.edu/user/sowen/mintro.html
http://www.argusint.com/MeshGeneration.html
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Linear Finite Element Analysis (FEA) – Linear Finite Element Analysis is based on the 

following assumptions: (1) Static; (2) Small displacements; (3) Material is linearly elastic. 

 

Nonlinear Finite Element Analysis – Nonlinear Finite Element Analysis considers material 

nonlinearity and/or geometric nonlinearity of an engineering system. Geometric nonlinear 

analysis is also called large deformation analysis. 

 

GUI – GUI stands for graphical user interface, which provides a visual tool to build a finite 

element model for a domain with complex geometry and boundary conditions.  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1 shows an example of discretization of a surface domain using triangular elements. 

The actual boundary of the domain is shown in dashed lines. E1 and N1 represent Element 1 

and Node 1, respectively.  

 

What Are Matrices and Vectors? 

 

To understand Finite Element Methods, one needs to understand the mathematical terms 

"matrix" and "vector". In mathematics, a matrix is a rectangular table of data. A matrix with 

m rows and n columns is said to be an m-by-n matrix. For example,  
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is a 3-by-4 matrix. A matrix with m rows and m columns is called an m-by-m square matrix. 

The simplest matrix is called identity matrix, which is a square matrix with a value of 1 along 

its diagonal entries and a value of 0 for all other entries.  The following matrix is a 3-by-3 

identity matrix: 
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Figure 1 – Triangulation of a Surface Domain 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/
http://www.algor.com/news_pub/tech_reports/2003/beyondlinear/default.asp
http://en.wikipedia.org/wiki/Graphical_user_interface
http://mathworld.wolfram.com/Matrix.html
http://mathworld.wolfram.com/SquareMatrix.html
http://mathworld.wolfram.com/IdentityMatrix.html
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In the context of Finite Element Methods, vectors are commonly denoted by matrices with 

dimensions n×1 (column vector) or 1×n (row vector). For example, the matrix below is also 

called a column vector: 

 

 

Matrices and vectors offer concise mathematical expression for a set of simultaneous 

algebraic equations. For example, the following set of simultaneous algebraic equations 

4x + 3y + 2z = 8 

3x + 2y + 1z = 4                                                                                                         (1) 
2x + 1y + 1z = 2 

can be written as a matrix equation: 

 

 

 

Furthermore, if we use the following notations to represent each matrix and vector: 

 

 

 

 

 

 

the above matrix equation can be re-written as: 

 

[K]{u} = {f} 

 

or 

 

Ku=f      (2) 

 

The boldface letters K or u in the above matrix Equation (2) represent matrices or vectors in 

the context of FEM, and provide the most concise mathematical expression. The boldface 

letter I usually stands for the identity matrix. 

Matrices in the mathematical sense are useful for keeping track of the coefficients of linear 

expressions such as linear transformations and systems of linear equations. The field of 

mathematics that studies matrices is called matrix theory, a branch of linear algebra. We can 

do addition, multiplication and many different operations on matrices. The matrix operation 
similar to number inversion is called matrix inverse. 

How to Solve a Matrix Equation 

 

In a typical engineering problem, matrix K and vector f are usually known while the vector u 

is an unknown. To solve for the unknown, one needs to perform the following operation: 
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http://www.pdhcenter.com/
http://www.pdhonline.org/
http://mathworld.wolfram.com/MatrixEquation.html
http://mathworld.wolfram.com/IdentityMatrix.html
http://mathworld.wolfram.com/LinearTransformation.html
http://www.fact-index.com/s/sy/system_of_linear_equations.html
http://www.fact-index.com/m/ma/matrix__mathematics_.html
http://www.fact-index.com/l/li/linear_algebra_1.html
http://mathworld.wolfram.com/MatrixInverse.html
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u =K-1f 

 

in which K-1 is the matrix inverse of K. The product of a square matrix and its inverse yields 

an identity matrix of the same dimensions. Math software such as MathCad can be used to 

easily find a matrix inverse. MathCad provides a complete, integrated environment for 

performing, documenting and communicating technical calculations. Within a MathCad 

worksheet one can perform "live" numeric or symbolic calculations, add graphics and 

animations, and annotate and format text. When one needs to change a variable, MathCad 

updates the results, formulae and graphs automatically and instantly. All the MathCad 

calculations contained herein are embedded in the MS Word document as an object before 

the document is converted to PDF format. For example, the above matrix Equation (2) can be 

solved by MathCad as follows: 
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The notation ":=" in the above MathCad calculation is called definition symbol, which assigns 

a value to a variable or values to a matrix.  

 

There are several algorithms to solve a system of linear equations numerically on a 

computer. One of the algorithms is called the Gauss Elimination Method, which consists of 

two steps in its solution process: 

 

1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in each 

equation starting with the first equation.  This way, the equations are “reduced” to one 

equation and one unknown in the last equation. 

 

2. Back Substitution: By eliminating all but one unknown in the last equation, one can 

solve for the unknown variables from last equation up. In this step, starting from the 

last equation, each of the unknowns is found by back-substitution.  

 

http://www.pdhcenter.com/
http://www.pdhonline.org/
http://mathworld.wolfram.com/MatrixInverse.html
http://mathworld.wolfram.com/IdentityMatrix.html
http://www.mathsoft.com/
http://en.wikipedia.org/wiki/Gauss-Jordan_elimination
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Fundamental Concepts of FEM 

 

From the mathematics standpoint, many engineering phenomena can be expressed by 

"governing equations" and "boundary conditions" such as 

 

G() + f = 0                    (3) 

B() + h = 0                  (4) 

 

The governing equation (3) is often in the form of a differential equation, which can be 

converted into a matrix equation using FEM: 

 

Ku=f                                       (5) 

 

The solution to the above matrix equation is 

 

u =K-1f                                (6) 

 

in which K represents the property, u the behavior, and f the action. The following table 

summarizes the physical significance of these variables for different types of engineering 

problems: 

 
Table 1 – Summary of Property, Behavior and Action in FEM 

Problem Type Property, K Behavior, u Action, f Applicable Field 

Elastic Problem Stiffness Displacement Force Structural 

Engineering 

Thermal Problem Conductivity Temperature Heat Source Mechanical 

Engineering 

Electrostatic 

Problem 

Dialectric 

Permittivity 

Electric Potential 

 

Charge 

 

Electrical 

Engineering 

Fluid Problem Viscosity 

 

Velocity 

 

Body Force 

 

Civil & Mechanical 
Engineering 

 

In order to use FEM to analyze an engineering problem, it is necessary to divide the entire 

domain (structure) into a number of small, simple elements. A field variable is interpolated by 

a polynomial over an element. The adjacent elements have to share the same degrees of 

freedom at connecting nodes to achieve compatibility. By connecting elements together, the 

field variable becomes interpolated over the entire domain (structure) in piecewise fashion, 

which results in a set of simultaneous algebraic equations at nodes.  By solving the algebraic 

equations, one can obtain primary unknown field variables at nodes. 

 

One may visualize FEM as follows: 

  

1. First break a structure (domain) into several smaller pieces (elements). 

2. Derive the governing equations in matrix form for each element based on the physics 

of the problem. 

3. Stitch elements together at nodes (nodal points). 

4. Assemble a set of simultaneous algebraic equations in matrix form for the entire 

structure (a global equation). 

5. Solve for primary unknown variables at nodes by using the known boundary 

conditions. 

6. Solve for other unknown variables at the element level. 

http://www.pdhcenter.com/
http://www.pdhonline.org/
http://mathworld.wolfram.com/Polynomial.html
http://www.algor.com/service_support/hints_tips/degree_of_freedom.asp
http://www.algor.com/service_support/hints_tips/degree_of_freedom.asp
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What Types of Engineering Problems Can Be Solved by FEM? 

 

Finite element methods are employed in a wide variety of engineering disciplines, and have 

been widely used in solving problems related to: 

 

1. Stress analysis  

2. Electrostatics  

3. Magnetic fields 

4. Fluid flow 

5. Dynamics 

6. Heat-transfer 

 

What Is the Procedure of FEA? 

 

Various methods such as energy methods or virtual work principles can be used to derive 

Finite Element equations. The typical procedure for Finite Element Analysis (FEA) is as 

follows: 

 

1. Preprocessing: user builds a Finite Element (FE) model and defines the boundary 

conditions and loads for an engineering problem. 

2. Processing: computer conducts numerical analysis and prints out results for the 

model. 

3. Postprocessing: user analyzes and interprets the results of FEA. 

 

The followings are the typical steps in performing Finite Element Analysis: 

 

Step 1 – Select Element Type: Element type affects the ease of modeling and the accuracy 

of solution. 

Step 2 – Discretize: The problem domain (structure) is divided into a collection of simple 

shapes, or elements. 

Step 3 – Derive Governing Equations for Each Element: Element matrix equation can be 

developed based on the physics of the problem using methods such as energy 

method or virtual work principle. 

Step 4 – Assemble Global Governing Equations: The element matrices are assembled 

into a global matrix equation that models the properties of the entire domain 

(structure). 

Step 5 – Apply Boundary Conditions: Boundary conditions reflect the known values for 

certain primary unknowns.  Imposing the boundary conditions modifies the global 

matrix equations. 

Step 6 – Solve for Primary Unknowns: The modified global matrix equations are solved 

for the primary unknowns at the nodes. 

Step 7 – Calculate Derived Variables: Other field variables can be calculated using the 

nodal values of the primary variables. 

Step 8 – Check and Interpret the Results: This step is probably the most critical. While 

checking and interpreting the results, one may find results unreasonable, thus 

prompting revisions and re-analysis. 

 

To build a realistic FE model for a specific problem, one needs to select appropriate type of 

finite elements to start with. 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/


www.PDHcenter.com                                PDH Course C101                                www.PDHonline.org 
 

Page 8 of 17 

What Types of Finite Elements Are Available? 

 

Common Finite Elements for structural problems are 

 

 

 

         Truss Element             Beam Element 

 

 

 

 

 

 

          Shell Element             Plate Element             Solid Element 

 

Within the above elements, one can specify linear or quadratic type of elements depending on 

the desired accuracy of numerical approximation through linear polynomials or quadratic 

polynomials. Linear elements are used in most engineering applications for simplicity. 

Commercial engineering analysis software may contain hundreds of different finite element 

types for various engineering applications.  

 

The difference between a truss element and a beam element is in the degrees-of-freedom at 

the nodes. For a 3-D truss element, there are only three translational degrees-of-freedom at 

each node. A 3-D beam element contains three rotational degrees-of-freedom in addition to 

three translational degrees-of-freedom at each node. 

 
Table 2 – Degrees-of-freedom for Some Common Structural Element Types 

Element Degrees of Freedom 

3-D Truss Element Translation in X, Y, Z 

3-D Beam Element Translation in X, Y, Z; Rotation in X, Y, Z 

2-D Truss Element Translation in X, Y 

2-D Beam Element Translation in X, Y; Rotation in Z 

 

 

 

 

http://www.pdhcenter.com/
http://www.pdhonline.org/
https://wiki.csiberkeley.com/display/kb/Truss
http://www.isr.umd.edu/~austin/aladdin.d/fe-library.html
https://wiki.csiberkeley.com/display/kb/Shell
http://www.comp-engineering.com/products/SAP2000/element_library.html
http://www.fem-infos.com/Element_types/Element_types_of_FEM_system_MEANS.html#MEANS-SOLID - 3D solid structures
http://www.algor.com/service_support/hints_tips/degree_of_freedom.asp
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What Is the Simplest Finite Element Model? 

A 1-D spring problem can be transformed into the simplest Finite Element model, which is 

very helpful in understanding the basic concept of FEM. 

 

 

 

 

 

 

 

 

 

 

 

If the spring stiffness is equal to 100 pounds/inch and the weight is equal to 200 pounds, we 

can easily solve this one-element problem by hand as follows: 

 

K = 100                         f = 200 

 

100u = 200                   u = 200/100 = 2 inches 

 

In the above simple spring problem, there is only one entry in the stiffness matrix K. In the 

real world, the stiffness matrix could contain thousands of entries for a multistory building 

model. 

 

A Real World Problem 

 

Let us take a look at the following 2-D beam problem. This beam is subject to a concentrated 

load P2 at the midspan. The boundary conditions are: the left end of the beam is fixed, and 

the right end has a roller-type support. 

 

 

 

 

  

 

 

 

 

 

If we want to find out the vertical displacement at the location of the concentrated load, one 

way is to introduce a node at the midspan of the beam. So for this simple beam problem, we 

have a finite element model with 3 nodes and 2 beam elements (element numbers are shown 

in a box). 

 

There are three degrees-of-freedom at each node of a 2-D beam element (see Table 2 above 

and Figure 4 below).  

 

u 
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K Ku=f 

 

K – Spring Stiffness 

u – Displacement 
f  – Force (weight) 

Figure 2 – Typical Spring Problem 
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Figure 3 – Finite Element Model of a 2-D Beam  
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The typical stiffness matrix, displacement vector and force vector of a 2-D beam element are 

as follows (click here for details of beam stiffness matrix development): 
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in which E=Elastic modulus, A=Area, I=Moment of Inertia, L=Length of the beam, 

μ=Longitudinal displacement, =Transverse displacement, θ=Rotation, a=Axial force, 

p=Shear force, m=Internal moment, u=Displacement vector, and f=Force vector. The field 

variables with subscripts "i" and "j" represent the values at the left and right end of the 

element, respectively. If the axial deformations are ignored, the typical stiffness matrix, 

displacement vector and force vector of the above beam element can be simplified as follows:  
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Figure 4 – Degrees-of-Freedom of a Typical 2-D Beam Element 
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Considering the fixed boundary conditions 1=0 (no vertical displacement at Node 1) and 

1=0 (no rotational displacement at Node 1), we can further simplify the stiffness matrix, 

displacement vector and force vector for beam Element 1 as follows: 

 

K1

12EI

L
3

6EI

L
2

6EI

L
2

4EI

L
1















 u1

2

2









 f1

p12

m12











 
 

In the above expression, p12 and m12 represent shear force and internal moment at the 

second node (j node, right end) of Element 1, respectively. Similarly for beam Element 2, the 

stiffness matrix, displacement vector and force vector can be written as follows: 

 

 

K2

12EI

L
3

6EI

L
2

6EI

L
2

6EI

L
2

4EI

L
1

2EI

L
1

6EI

L
2

2EI

L
1

4EI

L
1























 u2

2

2

3













 f2

p21

m21

m22















 
in which p21 and m21 represent shear force and internal moment at the first node (i node, left 

end) of Element 2, respectively.   

 

Now that we have the stiffness matrix, displacement vector and force vector for each 

element, we need to join the elements together using the corresponding degree-of-freedom 

at the adjacent node. This step is called stiffness matrix assembly for structural type of 

problems. In this example, we use the method of direct formulation to form the global matrix 

equation. To assemble the element matrix equations into a global matrix equation, we first 

need to expand the element stiffness matrix, displacement vector and force vector so that 

their sizes correspond to the size of the global stiffness matrix, displacement vector and force 

vector, and then add the two element matrix equations together. Here are the expanded 

element stiffness matrix, displacement vector and force vector for Element 1:  

 

 

K1

12EI

L
3

6EI

L
2

0

6EI

L
2

4EI

L
1

0

0

0

0



















 u1

2

2

3













 f1

p12

m12

0















 
 

The element stiffness matrix, displacement vector and force vector for Element 2 happen to 

be the same size of the global stiffness matrix, displacement vector and force vector, 

 K        

 u 

 f 

 K        

 u 

 f 

 K         f  u 
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respectively. To assemble the two element matrix equations into the global matrix equation, 

we just perform the following matrix additions: 

 

K = K1 + K2 

 

f= f1 + f2 

 

Hence, the global stiffness matrix, displacement vector and force vector for this 2-D beam 

problem can be written as: 

 

K

24EI

L
3

0

6EI

L
2

0

8EI

L
1

2EI

L
1

6EI

L
2

2EI

L
1

4EI

L
1























 u

2

2

3













 f

P2

M2

M3















 
in which P2 = p12 + p21, M2 = m12 + m21, and M3 = m22. These represent the equilibrium 

relationship between the external and internal forces at the nodes. P2 is the external force at 

Node 2. M2 is the external moment at Node 2. M3 is the external moment at Node 3.  

 

In concise matrix form, the finite element formulation for the above structural problem can 

be written as: 

 

Ku=f                                       (7) 

 

Assuming one vertical downward concentrated load (P2=-10000 pounds), zero moment at 

Node 2 (M2=0), zero moment at Node 3 (M3=0), L=100 inches, E=30,000,000 psi, and I=100 

in4, we can solve the above Equation (7) using MathCad as follows: 

 u  K         f 
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2

2

3













0.243

1.042 10
3



4.167 10
3















or

2

2

3













uu

0.243

1.042 10
3



4.167 10
3

















u K
1
f

Solve for unknow n displacement vector:

K
1

2.431 10
5



1.042 10
7



4.167 10
7



1.042 10
7



5.208 10
9



4.167 10
9



4.167 10
7



4.167 10
9



1.667 10
8



















Stif fness Matrix Inverse:

f

1 10
4



0

0













f

P2

M2

M3













K

7.2 10
4



0

1.8 10
6



0

2.4 10
8



6 10
7



1.8 10
6



6 10
7



1.2 10
8



















1

1

3













0

0

0













P2

M2

M3













10000

0

0











K

24 EI
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6 EI
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8 EI

L
1

2 EI

L
1

6 EI

L
2

2 EI

L
1

4 EI

L
1

























Know n Boundary Conditions:Assembled Stiffness Matrix:

EI E IP2 10000I 100E 30000000L 100

 
 

Therefore, the vertical displacement at Node 2 is equal to 0.243 inches (downward) under a 

10000-pound concentrated load, and the rotation at Node 3 is equal to 0.004167 radians. 

Notes: (a) Positive rotation means counterclockwise rotation using the standard sign 

convention (right-hand rule).  (b) The unit of angular rotation in FEA is normally in radians, 

not degrees.  

 

Based on the above displacements, we can also solve for the support reactions using the 

element matrix equation based on the complete element stiffness matrix, displacement 

vector and force vector (see page 10). The detailed MathCad calculations for the support 

reactions are shown on the next page. 
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p21

m21

p22

m22

















3.125 10
3



3.125 10
5



3.125 10
3



5.116 10
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
















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



Force vector for Element  2:

f2 K u2u2
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Displacement  vector for Element 2:
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
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Displacement  vector for Element 1:

K

3.6 10
4


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6


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
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
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Element Stif fness Matrix:
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Based on the above calculations, the support reactions at Nodes 1 and 3 are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 = p11 = 6875 pounds      M1 = m11 = 375000 in-pounds 

R3 = p22 = 3125 pounds      M3 = m22 = -5.116x10-13 in-pounds 

 

To verify the correctness of the above calculations, one may add up all the vertical reactions 

to see if the sum is equal to the applied load. In this case, sum of the vertical reactions        

= R1 + R3 = 6875 + 3125 = 10000 pounds, which is the same as the applied concentrated 

load P2. 

 

Based on the above calculations, M3 (the external moment at Node 3) has a very small value, 

but should be equal to zero. This is caused by the numerical error due to the limited number 

of digits used in the MathCad calculations. 

 

Boundary conditions on a structure may occur as either applied displacements or external 

forces. In the above example, there are three known displacements (if the axial deformation 

is ignored) and three known external forces, including two zero moments at Nodes 2 and 3. 

 

FEM for Dynamic Problems 

 
The typical Finite Element equation Ku=f is applicable to static problems only.  For dynamic 

problems, the finite element equation of motion takes the form of  

 

Mü + Cu + Ku = f                  (8) 

 

in which M is the mass matrix, C the damping matrix, K the stiffness matrix, ü the 

acceleration vector, u the velocity vector, u the displacement vector, and f the force vector. 

Equation (8) basically represents an equilibrium equation for any physical system. For a static 

problem, Equation (8) becomes Equation (2) (see page 3) since there is no acceleration 

(ü=0) and no velocity (u=0). 

 

Dynamic problems or forced vibration problems are time-dependent problems, which means 

that we also need to discretize the time domain to achieve Finite Element solutions. If there 

is no damping and no external force, Equation (8) becomes 

 

Mü + Ku = 0                   (9) 

 

Equation (9) represents a free dynamic vibration problem, which is an eigenvalue problem 

from mathematical standpoint. The solution to the eigenvalue problem is the natural 

frequency of the structure. 

 . 

 . 

 . 

y 

x o 

3 

P2 

1 2  1  2 

L L 
 R1  R3 

 M1 

Figure 5 – 2-D Beam Load Diagram 
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What Are the Advantages of FEM? 

 

1. FEM can readily handle very complex geometry and boundary conditions (restraints). 

2. FEM can handle complex loading, from point loads to uniform loads to dynamic loads. 

3. FEM can solve various engineering problems, from solid mechanics to dynamics to 

heat transfer, and to electrostatic fields. 

 

With the widespread use of PCs in engineering offices, FEM can provide an engineering 

solution at a few clicks of a mouse (for simple problems, of course).  

 

What Are the Disadvantages of FEM? 

 

1. The FE solutions are often approximate. The more refined the grid (mesh), the more 

accurate the FE solution.  

2. The FE solution may contain "inherent" computational errors as a result of error 

accumulation during the numerical computation.  

3. The FE solution may contain "fatal" errors as a result of incorrect modeling of 

structures, loads or boundary conditions. 

 

To minimize the "inherent" computational errors and to eliminate "fatal" errors as a result of 

incorrect modeling, engineers and architects need to understand the fundamentals of Finite 

Element Methods, and to be able to model a system and its boundary conditions correctly. 

 

A Sampling of Commercial FE Software 

 

Hundreds of commercial FEM programs are available in the world. The following is just a 

sampling of commonly used FEM software packages: 

 

Software 

Name 

Features 

ANSYS The ANSYS finite element analysis software package is a flexible, robust 

design analysis and optimization package. ANSYS features file compatibility 

throughout its family of products and across all platforms. The multiphysics 

nature of ANSYS allows the same model to be used for a variety of coupled-

field applications, such as thermal-structural, magneto-structural, and 

electrical-magnetic-flow-thermal. In addition to solution generation tools, 

comprehensive analysis and graphics tools are also included, which allow 

the user to effectively visually model various types of systems.  

GT STRUDL GT STRUDL is a fully integrated and database-driven software system for 

general finite element analysis and comprehensive structural engineering 

design. GT STRUDL’s nine functional areas that operate seamlessly with one 

another combined with its amazingly fast computational speed provide 

virtually unlimited power and flexibility for projects of any size or 

complexity. 

RISA RISA is a general-purpose structural engineering software for Windows. It 

consists of several components: RISAFloor - Structural Engineering 

Software for Buildings to manage loads, design members, generate plans, 

and serve RISA-3D lateral system design information; RISA-3D - Easy 3D 

Structural Engineering Analysis & Design Software for general frame, truss, 

and plate/shell structures; and RISA-2D - Simple 2D Structural Engineering 

Software for Analysis & Design of continuous beams, 2D trusses, and 2D 
frames. 
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SAP2000 SAP2000 is an integrated, productive and practical general purpose 

structural program on the market today. It features a sophisticated, 

intuitive and versatile user interface for engineers working on 

transportation, industrial, public works, sports, and other facilities. 

Structures can be analyzed for the effects of staged construction, including 

the adding and removing of temporary shoring. Nonlinear effects can be 

considered such as large deflections, yielding, and gap opening and closing. 

Arbitrary loading sequences may be applied. Multiple construction 

sequences may be analyzed in the same model and compared or enveloped. 

Dynamic, buckling, and other types of analyses can be performed at the 

end of any construction sequence, so that the behavior of a structure can 
be examined before and after a retrofit.  

STAAD PRO STAAD.Pro, a structural engineering software product for 3D model 

generation, analysis and multi-material design, is the flagship product of 

former Research Engineers International, now a part of Bentley Systems, 

Incorporated.  It has an intuitive, user-friendly GUI, visualization tools, 

powerful analysis and design facilities and seamless integration to several 

other modeling and design software products. STAAD.Pro can be used for 

static or dynamic analysis of bridges, containment structures, embedded 

structures (tunnels and culverts), pipe racks, steel, concrete, aluminum or 

timber buildings, transmission towers, stadiums or any other simple or 
complex structure.  

 

Summary 

 
Finite Element Method is a very powerful computational tool for engineers and architects to 

analyze complex electrostatic, structural and mechanical systems. A basic understanding of 

FEM helps engineers and architects solve the problems that are intractable using analytic or 

mechanical methods. 
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