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Module 3 

    

Point Positioning 

 

             In point positioning, the positions of the satellites are available from the data in their 

broadcast ephemerides.  The satellite clock offset and the ionospheric corrections are also 

available to a GPS receiver once it has locked on.  That is once it has correlated its code with the 

codes it is receiving.  Then it can immediately read the Navigation messages of all four or more 

satellites it is tracking.  But the receiver must assume that all these corrections in the Navigation 

message are absolutely correct, which is a bit of an exaggeration.  In fact, there are errors in 

these corrections.  And along with the timing errors between the receiver and satellite clocks, 

receiver noise, and any multipath, they still contaminate the position that results. (See module 2 

for a more complete discussion of these biases.) 

 

                Nevertheless this kind of positioning is the fulfillment of the original idea behind GPS. 

 It relies on a coded pseudorange measurement and can be used for virtually instantaneous 

positioning.   Pseudoranges from the receiver to three GPS satellites provide enough data to 

solve three Cartesian coordinates, ux, uy, and uz of the receiver.  The fourth pseudorange to the 

fourth satellite provides the information for the solution of the receiver's clock offset, dTu, as 

illustrated in the equations below and Figure 3.1.   
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                  The ability to achieve so much redundancy in the measurement of the receiver=s 

clock error, is one reason the moderate stability of quartz crystal clock technology is entirely 

adequate as a receiver oscillator. 

 

                      A unique solution is found here because the number of unknowns is not greater 

than the number of observations, obviously observing more satellites makes the solution even 

better.  But when the receiver tracks at least four satellites simultaneously; these four equations 

can be solved simultaneously for every epoch of the observation.  An epoch in GPS is a very 

short period of observation time, and is generally just a small part of a longer measurement.  

However, theoretically there is enough information in any single epoch to solve these equations. 

  

 

  

 

 

 

Relative Positioning 

          

              When two or more receivers are available relative positioning is possible and the 

accuracy of GPS positioning improves.  Relative positioning can attain higher accuracy than 

point positioning because of the extensive correlation between observations taken to the same 

satellites at the same time from separate stations.  In other words, two receivers operating 
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simultaneously, collecting signals from the same satellites will record errors, but very similar 

errors.  This is especially true when you consider that the distances between such stations on the 

earth are very short compared with the 20,000-km altitude of the GPS satellites. Relative 

positioning generally relies on carrier phase ranging instead of code pseudoranges. 

   

 

Carrier Phase 

 

Carrier phase is the observable at the center of high accuracy surveying applications of 

GPS.  It is also known as the carrier beat phase observable.  It depends on the carrier waves 

themselves, the unmodulated L1 and L2, rather than their P and C/A codes.  There is an 

interesting approximation that illustrates the potential of carrier phase ranging, “ The One-

Percent Rule of Thumb.” 

 

Assume for the moment most of the errors in the receiver and satellite clocks, receiver 

noise, ionospheric delay, broadcast ephermeris errors or multipath are gone.  Under such a 

circumstance you could expect pseudoranges to be accurate within about one percent of the 

chipping rate of the code used, whether it is the P code or the C/A code.  In practice, positions 

derived from these codes are rather less reliable than that, of course, because they must rely on 

the Navigation message corrections for the most part.   

 

But consider this a P code chip occurs every 0.0978 of a microsecond.  So by using this 

rule, a P code based  measurement could have a maximum precision of about 1- percent of about 
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a tenth of a microsecond, or one nanosecond.  One nanosecond multiplied by the speed of light 

is approximately 30 centimeters, 1 percent of the length of a single P-code chip.  

 

The C/A code based pseudorange is 10 times less precise. Its chipping rate is 10 times 

slower.  A C/A code pseudo-range would have a maximum resolution of about 3 meters, that is 1 

percent of the length of a single C/A code chip. 

 

Ok, now take a look at this same 1- percent rule of thumb applied to the carrier phase 

observable.  Instead of a code chip as the basis of the measurement, it is the wavelength of the 

carrier.  How long is one wavelength of the GPS carriers?  The length of a single wavelength of 

each carrier can be calculated using the same formula as was used previously in Module 1. 

 

f
c= aλ       

 

 

 Where:    λ = the length of each complete wavelength in meters; 

                 ca = the speed of light corrected for atmospheric effects;  

                 f  = the frequency in hertz.  

The L1-1575.42 MHz carrier transmitted by GPS satellites has a wavelength of 

approximately 19-cm. 
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The L2-1227.60 MHz frequency carrier transmitted by GPS satellites has a wavelength of 

approximately 24-cm 
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Therefore, using either carrier, the carrier phase measurement resolved to 1 percent of the 

24cm or the 19cm wavelength.  The accuracy would be about 2mm.  Quite an improvement, 

especially considering that in relative positioning atmospheric errors can be greatly reduced by 

the correlation mention earlier and satellite clock and receiver clock errors can be eliminated by 

differencing, more about that in just a moment.  However, first there is something called the 

cycle ambiguity problem that needs to be mentioned.  We’ve seen before with the EDM, except 

it is a little more difficult to solve in GPS  

 

An Illustration of the Cycle Ambiguity Problem 
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 While carrier phase, or carrier beat phase as it is sometimes called, is different than the 

pseudorange, the basis of the measurements have some similarities.  For example, the foundation 

of a pseudorange measurement is the correlation of the codes received from a GPS satellite with 

replicas of those codes generated within the receiver.  The foundation of the carrier phase 

measurement is the combination of the unmodulated carrier itself received from a GPS satellite 

with a replica of that carrier generated within the receiver. 

 

It’s like a distance measurement by an EDM.  As mentioned earlier an EDM sends a 

carrier wave to the reflector, and generates an identical internal reference.  When the external 

beam returns from the reflector, it is compared with the reference wave.  The difference in phase 

between the two reveals the fractional part of the measurement, even though the number of 

complete cycles between the EDM and the reflector may not be immediately apparent.  That is 

until modulated carriers of longer wavelengths are used (See module 1 for a more complete 

discussion of this process). 

 

Likewise, it is the phase difference between the incoming signal and the internal 

reference generated inside a GPS receiver that reveals the fractional part of the carrier phase 

measurement in GPS.  The incoming signal is from a satellite rather than a reflector of course, 

but like an EDM measurement, the internal reference derived from the receiver’s oscillator is 

used for comparison.  And just like an EDM measurement it is the difference in phase between 

the two reveals the fractional part of the range measurement.  And as the 1- percent rule of 

thumb illustrates this comparison is capable of a much more accurate measurement than 

pseudoranges.   
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But there is a problem.  Again, just like the EDM measurement the number of complete 

cycles is not immediately known.  In other words, when the receiver locks onto the carrier it 

cannot know how many full wavelengths stand between the satellite and itself at that instant and 

without that information it isn’t possible to know the full distance, of course.  

 

 There is one helpful fact about the cycle ambiguity though.  It has to be an integer. 

The full cycles between the receiver and the satellite at lock on must be a whole number.  So it is 

also called the integer cycle ambiguity. 

 

The situation is a lot like an unofficial technique used by some nineteenth century 

contract surveyors on the Great Plains.  The procedure can be used as a rough illustration of the 

cycle ambiguity problem in GPS.  

 

It was known as the buggy wheel method of chaining.  Some of the lines of the public 

land system that crossed open prairies were originally surveyed by loading a wagon with stones 

or stakes and tying a cloth to a spoke of the wheel.  One man drove the team, another kept the 

wagon on line with a compass and a third counted the revolutions of the flagged wheel to 

measure the distance.  When there had been enough turns of the improvised odometer to measure 

half a mile they set a stone or stake to mark the corner and then rolled on, counting their way to 

the next corner.   
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A GPS receiver is like the man assigned to count the turns of the wheel.  He is supposed 

to begin his count from the moment the crew leaves the newly set corner, but instead, suppose he 

jumps into the wagon, gets comfortable and takes an unscheduled nap.  When he wakes up the 

wagon is on the move.  Trying to make up for his laxness, he immediately begins counting.  But 

at that moment the wheel is at a half turn, a fractional part of a cycle.  He counts the subsequent 

half turn and then, back on the job, he intently counts each and every full revolution as they 

come around.  His tally grows as the cycles accumulate, but he is in trouble and he knows it.  He 

cannot tell how far the wagon has traveled; he was asleep for the first part of the trip.  He has no 

way of knowing how far they had come before he woke up and started counting.  He is like a 

GPS receiver that cannot know how far it is from the satellite when it starts counting phase 

cycles.  They can tell it nothing about how many cycles stood between itself and the satellite 

when the receiver was locked on and began tracking.  Those unknown cycles are the cycle 

ambiguity. The 360° cycles in the carrier phase observable are wavelengths λ, not revolutions of 

a wheel.  But there is a solution to the cycle ambiguity problem.  It is called differencing . 

 

Differencing 

 

           In GPS the word differencing has come to represent several types of simultaneous 

baseline solutions of combined measurements.  Now, obviously, differencing is only possible 

using two or more receivers and relative positioning. And it usually involves carrier phase, or 

carrier beat phase, measurements.  The lines between the pairs of receivers are called vectors or 

baselines.  In these illustrations only two receivers are used, but there could certainly be more 
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and the principles would be the same.  OK, the most frequently used differencing methods are 

known as the single difference, double difference, and triple difference.  

 

Single Difference 

 

                 A single difference, also known as a between-receivers difference, can refer to the 

difference in the simultaneous carrier phase measurements from one GPS satellite as measured 

by two different receivers (Figure 3.2) 

.  
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Figure 3.2



 
 

12

  

              Since the two receivers are both observing the same satellite at the same time the 

satellite clock error is eliminated in a single-difference. It is a bonus that the atmospheric biases 

and the orbital errors recorded by the two receivers in this solution are also nearly identical, and 

can be virtually eliminated too. 

 

                Unfortunately, there are still two factors in the carrier beat phase observable that are 

not eliminated by single differencing.  The difference between the integer cycle ambiguities at 

each receiver and the difference between the receiver clock errors remain. 

 

 

Double Difference 

 

                         There is a GPS solution that will eliminate the receiver clock errors.   It involves 

the addition of what might be called another kind of single difference, also known as a between-

satellites difference.  This term refers to the difference in the measurement of signals from two 

GPS satellites, as measured simultaneously at a single receiver (Figure 3.3).  
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Figure 3.3 
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     The data available from the between-sat ination of the receiver 

                       By using both the between-receivers difference and the between-satellites 

ck 

Triple Difference 

 

                   Combining two double differences creates A third kind of differencing.  Each of the 

  

ellites difference allow the elim

clock error.  In this situation, there can be no difference in the clock since only one receiver is 

involved in each of the component single differences.  And the atmospheric effects on the two 

satellite signals are again nearly identical as they come into the lone receiver, so the effects of 

the ionospheric and tropospheric delays are virtually eliminated as well.  

 

 

  

difference, a double difference is created.  This combination is virtually free of receiver clo

errors and satellite clock errors, but still there is one stubborn factor in the carrier beat phase 

observable that is not eliminated.  The integer cycle ambiguity is still in there. 

 

 

  

double differences involves two satellites and two receivers.  The difference next derived is 

between two epochs.  The triple difference is also known as the receiver-satellite-time triple 

difference (Figure 3.4), the difference of two double differences of two different epochs.  
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Figure 3.4 
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In the triple difference two receivers observ

it 

                  Actually, a triple difference is not sufficiently accurate for short baselines.  It is used 

 

                       First is the fractional initial phase, which occurs at the receiver at the first instant 

e the same two satellites during two consecutive 

epochs.  This solution can be used to quantify the integer cycle ambiguity because if all is as 

should be it is constant over the two observed epochs. 

 

  

to find the integer cycle ambiguity. Once the cycle ambiguity is determined it can be used with 

the double difference solution to calculate the actual carrier phase measurement.  Here’s how it 

works, from the moment of a receiver’s lock onto a particular satellite; there are actually three 

components to the total carrier phase observable. 

amiguity cycle = N                  
count cycle observed =                

phase initial fractional =                     
phase total =     
: where

N +  +  = 

β
α
φ

βαφ

 

 

  

of the lock-on.  The receiver starts tracking the incoming phase from the satellite.  The receiver 

grabs onto the satellite's signal at some fractional part of a phase.  It is interesting to note that 

this fractional part does not change for the duration of the observation and so is called the 

fractional initial phase.  It is symbolized here by α. 
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    Second is the integer number of full cycles of phase that occur from the moment 

           Third is the integer cycle ambiguity N.  It represents the number of full phase cycles 

                    In other words, the total carrier phase observable consists of two values that do not 

Cycle Slips 

 

            In fact, the triple difference makes the detection and elimination of cycle slips relatively 

                    

of the lock to the end of the observation.  It is symbolized by β, the observed cycle count.  This 

element is the receiver=s consecutive counting of the change in full phase cycles, 1, 2, 3, 4 . . ., 

between the receiver and the satellite as the satellite flies over.  Of the three terms, β is only 

number that changes - that is, if the observation proceeds correctly. 

 

  

between the receiver and the satellite at the first instant of the receiver's lock-on.  N does not 

change from the moment of the lock onward, unless that lock is lost. 

 

  

change during the observation, the fractional phase α, and the integer cycle ambiguity N.  Only 

the observed cycle count β, changes, unless there is a cycle slip. 

 

 

  

easy.  A cycle slip is a discontinuity in a receiver=s continuous phase lock on a satellites signal.  

The coded pseudorange measurement is immune from this difficulty, but the carrier beat phase is 

not.  
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                    When lock is lost a cycle slip occurs.  A power loss, an obstruction, a very low 

 

 over 

There are several methods that may be used to regain a lost integer phase 

value, N.  The triple e 

g all 

Summary 

                      

elative positioning by carrier phase measurement is the primary vehicle for high-

 

  

signal-to-noise ratio, or any other event that breaks the receiver=s continuous reception of the

satellite=s signal causes a cycle slip.  That is, the receiver loses its place in its count of the 

integer number of cycles β and, as a result, N is completely lost and the receiver has to start

from scratch. 

 

difference is one of the better alternatives in this regard, as stated earlier th

triple difference does not depend on the initial integer ambiguity, because it is a constant in time. 

 Therefore, when a large residual does appear in its component double differences it is very 

likely caused by a cycle slip.  Even better the obstructed signal can be singled-out by isolatin

available satellite pairs until the problem is found.  This utility in fixing cycle slips is the primary 

appeal of the triple difference.  It can be used as a preprocessing step to weed out cycle slips and 

provide a first position for the receivers.  

 

                     R

accuracy GPS surveying.  Simultaneous observations, double differencing in postprocessing, and

the subsequent construction of networks from GPS baselines are the hallmarks of geodetic and 

control work in the field.  The strengths of these methods generally outweigh their weaknesses, 
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particularly where there can be an unobstructed sky and relatively short baselines and where the 

length of observation sessions is not severely restricted.   

 

 

                   However, conditions are not always so ideal.  Where obstructions threaten to 

produce cycle slips, coded pseudorange measurements may offer an important advantage over 

carrier phase.  Pseudorange measurements also may be preferred where accuracy requirements 

are low and production demands are high.   

                     

              Differencing is an ingenious approach to minimizing the effect of errors in carrier phase 

ranging.  It is a technique that largely overcomes the impossibility of perfect time 

synchronization. Double differencing is the most widely used formulation. Double differencing 

still contains the initial integer ambiguities, of course.  And the estimates of the ambiguities 

generated by the initial processing are usually not integers, in other words, some orbital errors; 

atmospheric errors, etc. remain.  But with the knowledge that the ambiguities ought to be 

integers, during subsequent processing it is possible to force estimates for the ambiguities that 

are in fact integers.  When the integers are so fixed, the results are known as a fixed solution, 

rather than a float solution.  It is the double differenced carrier phase based fixed solution that 

makes the very high accuracy possible with GPS.   

 

              However, in this discussion of errors it is important to remember that multipath, cycle 

slips, incorrect instrument heights, and a score of other errors whose effects can be minimized or 
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eliminated by good practice are simply not within the purview of differencing at all.  The 

unavoidable biases that can be managed by differencing - including clock, atmospheric, and 

orbital errors - can have their effects drastically reduced by the proper selection of baselines, the 

optimal length of the observation sessions, and several other considerations included in the 

design of a GPS survey.  But such decisions require an understanding of the sources of these 

biases and the conditions that govern their magnitudes.  The adage of, "garbage in, garbage out," 

is as true of GPS as any other surveying procedure.  The management of errors cannot be 

relegated to mathematics alone.    

 

 

 

 

 

 

 

 

 

 


	Module 3
	Point Positioning
	Relative Positioning
	Cycle Slips



