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Design of Beams and Other Flexural Members 

AISC LRFD 3rd Edition (2001) 
 

Jose-Miguel Albaine, M.S., P.E. 
 
 

 
COURSE CONTENT 

 
1. Bending Stresses and Plastic Moment 
 
The stress distribution for a linear elastic material considering small 
deformations is as shown on Figure No. 1.  The orientation of the beam is 
such that bending is about the x-x axis.  From mechanics of materials, the 
stress at any point can be found as: 
 
 
 
where M is the bending moment at the cross section, y is the distance from 
the neutral axis to the point under consideration, and Ix is the moment of 
inertia of the area of the cross section.   
 
Equation 1 is based on the following assumptions: 
 

1) Linear distribution of strains from top to bottom 
2) Cross sections that are plane before bending remain plane after 

bending 
3) The beam section must have a vertical axis of symmetry 

fb  =
M y
Ix

(Eq. 1)
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4) The applied loads must be in the longitudinal plane containing the 
vertical axis of symmetry otherwise a torsional twist will develop 
along with the bending 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1 
 

The maximum stress will occur at the extreme fiber, where y is at a 
maximum.  Therefore there are two maxima: maximum compressive stress 
in the top fiber and maximum tensile stress in the bottom fiber.  If the 
neutral axis is an axis of symmetry, these two stresses are equal in 
magnitude. 
The maximum stress is then given by the equation: 
 
 
 
 

fmax =
M c
Ix

 =
M 

Ix / c
M 
Sx

 = (Eq. 2)
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Where c is the distance from the neutral axis to the extreme fiber, and Sx is 
the elastic section modulus of the cross section.  Equations 1 and 2 are valid 
as long as the loads are small enough that the material remains within the 
elastic range, or that fmax does not exceed Fy, the yield strength of the beam. 
 
The bending moment that brings the beam to the point of yielding is given 
by: 
 

My = FySx                                                (Eq. 3) 
 
 
In Figure No. 2, a simply supported beam with a concentrated load at 
midspan is shown at successive stages of loading.  Once yielding begins, the  
distribution of stress on the cross section is no longer linear, and yielding 
progresses from the extreme fiber toward the neutral axis.  The yielding 
region also extends longitudinally from the center of the beam as the 
bending moment reaches My at more locations.   
 
In Figure 2b yielding has just begun, in Figure 2c, yielding has progressed to 
the web, and in Figure 2d the entire section has reached the yield point.  The 
additional moment to bring the beam from stage b to d is, on average, about 
12% of the yield moment, My, for W-shapes.  After stage d is reached, any 
further load increase will cause collapse.  A plastic hinge has been formed at 
the center of the beam. 
 
The plastic moment which is the moment required to form the plastic hinge 
is computed as: 
 
 

Mp = Fy Zx                    (Eq. 4) 
 
where Zx is the plastic section modulus and is defined as shown on Figure 
No. 3.   
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Figure 2 
 
 

 
 
 

Moment Diagram

f < Fy

(a)

f = Fy

(b)

 Fy

 Fy

(c)

(d)
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The tensile and compressive stress resultants are depicted, showing that Ac 
has to be equal to At for the section to be in equilibrium. Therefore, for a 
symmetrical W-shape, Ac = At = A /2, and A is the total cross sectional area 
of the section, and the plastic section modulus can be found as: 
 

 
(Eq. 5) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 

 
 

2.  AISC LRFD 3rd Edition – November 2001   
 
Load and resistance factor design (LRFD) is based on a consideration of 
failure conditions rather than working load conditions.  Members and its 
connections are selected by using the criterion that the structure will fail at 
loads substantially higher than the working loads.  Failure means either 
collapse or extremely large deformations.   
 
Load factors are applied to the service loads, and members with their 
connections are designed with enough strength to resist the factored loads. 
Furthermore, the theoretical strength of the element is reduced by the 
application of a resistance factor. 
 
The equation format for the LRFD method is stated as: 

Mp = Fy (Ac) a = Fy (At) a = Fy (A/2) a = Fy Zx

Zx = A
2

a

Plastic Neutral Axis

a

C = Ac Fy

Fy

x x

y

y

Fy
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ΣγiQi = φ Rn   (Eq. 6) 

 
Where: 
Qi = a load (force or moment) 
 
γi = a load factor (LRFD section A4 Part 16, Specification) 
 
Rn  = the nominal resistance, or strength, of the component under 
consideration 
 
φ = resistance factor (for beams given in LRFD Part 16, Chapter F) 
 
The LRFD manual also provides extensive information and design tables for 
the design of beams and other flexural members.   
 
 
 
3.  Stability of Beam Sections   

 
As long as a beam remain stable up to the fully plastic condition as depicted 
on Figure 2, the nominal moment strength can be taken as the plastic 
moment capacity as given in Equations 4 and 5. 
 
Instability in beams subject to moment arises from the buckling tendency of 
the thin steel elements resisting the compression component of the internal 
resistance moment.  Buckling can be of a local or global nature.  Overall 
buckling (or global buckling) is illustrated in Figure 4. 

 
 Figure 4 

 
 
When a beam bends, the compression zone (above the neutral axis) is similar 
to a column and it will buckle if the member is slender enough.  Since the 
web is connected to the compression flange, the tension zone provides some 
restraint, and the outward deflection (lateral buckling) is accompanied by 

Twisting

Lateral Buckling
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twisting (torsion).  This mode of failure is called lateral-torsional buckling 
(LTB). 
 
Lateral-torsional buckling is prevented by bracing the beam against twisting 
at sufficient intervals as shown on Figure 5. 
 
 
 
 
 
 
 
 

 
Figure 5 

 
The capacity of a beam to sustain a moment large enough to reach the fully 
plastic moment also depends on whether the cross-sectional integrity is 
maintained.  This local instability can be either compression flange 
buckling, called flange local buckling (FLB), or buckling of the compression 
part of the web, called web local buckling (WLB). The local buckling will 
depend on the width-thickness ratio of the compressed elements of the cross 
section. 
 
 
4.  Compact, Noncompact and Slender Sections   
 
The classification of cross-sectional shapes is found on AISC Section B5 of 
the Specification, “Local Buckling”, in Table B.5.1.  For I- and H-shapes, 
the ratio of the projecting flange (an unstiffened element) is bf / 2tf, and the 
ratio for the web (a stiffened element) is h / tw, see Figure 6. 
 

LATERAL BRACING

Cross Brace Diaphragm

TORSIONAL BRACING
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Figure 6 
 
 
Defining, 
 
λ  =  width-thickness ratio 
 
λp =  upper limit for compact sections 
 
λr =  upper limit for noncompact sections 
 
Then, 
 

If λ  ≤   λp  and the flange is continuously connected to the web, the shape is                        
compact 

If λp  <   λ   ≤   λr , the shape is noncompact 
 
λ  >   λr, the shape is slender 
 
 
The following Table summarizes the criteria of local buckling for hot-rolled  
I- and H-shapes in flexure.  
 
 
 
 

bf

tf

h tw

Width-Thickness Dimensions
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TABLE 1 
 
Element                  λ                                        λp                                                              λr 
 
 
Flange                                                  
 
 
 
Web        
 
 
 
5.  Bending Strength of Compact Shapes   
 
A beam can fail by reaching the plastic moment Mp and becoming fully 
plastic, or it can fail by: 
 

a) Lateral-Torsional buckling (LTB), either elastically or inelastically; 
b) Flange local buckling (FLB), elastically or inelastically; 
c) Web local buckling (WBL), elastically or inelastically. 

 
When the maximum bending stress is less than the proportional limit, the 
failure is elastic.  If the maximum bending stress is larger than the 
proportional limit, then the failure is said to be inelastic. 
 
The discussion in this course will be limited to only hot-rolled I- and H-
shapes.  The same principles discussed here apply to channels bent about the 
strong axis and loaded through the shear center (or restrained against 
twisting). 
 
Compact shapes are those shapes whose webs are continuously connected to 
the flanges and that meet the following width-thickness ratio requirement for 
both flanges and web: 
 
 
 
  

bf

2 tf

E
Fy

0.38 E
Fy - 10

0.83

h

 tw

E
Fy

3.76 5.70 E
Fy

E
Fy

0.38
bf

2 tf

h

 tw

E
Fy

3.76and
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Note that web criteria is satisfied by all standard I- and C-shapes listed in the 
Manual of Steel Construction, and only the flange ratio need to be checked.  
Most shapes will also meet the flange requirement and thus will be classified 
as compact.  If the beam is compact and has continuous lateral support (or 
the unbraced length is very short), the nominal moment strength Mn is equal 
to the full plastic moment capacity of the section, Mp.  For members with 
inadequate lateral support, the moment capacity is limited by the lateral-
torsional buckling strength, either elastic or inelastic. 
 
Therefore, the nominal moment strength of lateral laterally supported 
compact sections is given by 
 

Mn = Mp                          (Eq. 7; AISC F1-1) 
 

Where    Mp = Fy Zx  ≤  1.5 My   
    
Mp is limited to 1.5 My to avoid excessive working-load deformations and 
 

Fy Zx  ≤  1.5 Fy Sx     or        Zx /Sx = 1.5 
 
Where S = elastic section modulus and for channels and I- and H-shapes 
bent about the strong axis, Zx / Sx will always be ≤ 1.5. 
 
The flexural design strength of compact beams, laterally supported is given 
by: 

  φbMn = φb Fy Zx   ≤  φb 1.5 Fy Sx   (Eq. 8) 
 
and φb = 0.90 
 
 
Example 1 
 
A W 16 x 36 beam of A992 steel (Fy = 50 ksi) supports a concrete floor slab 
that provides continuous lateral support to the compression flange.  The 
service dead load is 600 lb/ft, and the service live load is 750 lb/ft.  Find the 
design moment strength of the beam? 
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Solution 
 
Cross-sectional properties of the beam (LRFD Part1, Table 1-1): 
 
bf = 6.99 in.          tf = 0.43 in.         d = 15.9 in.           tw = 0.295 in.   
 
Zx = 64.0 in3           Sx = 56.5 in3    
 
The total service dead load, including the beam weight is 
 
WD = 600 + 36 = 636 lb/ft 
 
The maximum bending moment for a simply supported beam, loaded with a 
uniformly distributed load, 
 
MMAX = w L2 / 8  
 
The factored applied load, Wu = 1.2 (636) + 1.6 (750) = 1,963 lb/ft 
 
and  Mu = 1.963 (28)2 / 8 = 192.4 k-ft 
 
Check for compactness: 
 

 
         ∴ the flange is compact 
 

 
 
         for all shapes in the AISC Manual 
 

28 '

wD = 600 lb/ft        wL = 750 lb/ft

bf

2 tf

= 8.13 0.38 29000
50

= 9.15

h

 tw

E
Fy

3.76
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∴ W 16 x 36 is compact for Fy = 50 ksi 
 
Since the beam is compact and laterally supported, 
 
Mn = Mp = Fy Zx = 50 x 64.0 = 3,200 in.-kips = 266.7 ft-kips 
 
 
Check for Mp  ≤  1.5 My 
 

 
 
 

 
φbMn = 0.90 (266.7) = 240.0  ft-kips > 192.4 ft-kips        (OK) 
 
 
1. Bending Strength of Beams Subject to Lateral-Torsional Buckling 
   
When the unbraced length, Lb (the distance between points of lateral support 
for the compression flange), of a beam is less than Lp, the beam is 
considered fully lateral supported, and Mn = Mp as described in the 
preceding section.   The limiting unbraced length, Lp, is given for I-shaped 
members by equation (9) below: 

                                                                                                            
                         (Eq. 9 ; AISC F1-4)             
 

where,   
ry = radius of gyration about the axis parallel to web, y-axis 
E = Modulus of Elasticity, ksi 
Fyf = Yield stress of the flanges, ksi  
 
If Lb is greater than Lp but less than or equal to Lr, the bending strength of 
the beam is based on inelastic lateral-torsional buckling (LTB).  If Lb is 
greater than Lr, the bending strength is based on elastic lateral-torsional 
buckling (see Figure 7). 

Zx

Sx

64

56.5
= =  1.13   1.5  

Lp  =  1.76 ry
E
Fyf
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Figure 7 

 
 
 
For Doubly Symmetric I-shapes and Channels with Lb ≤ Lr: 
 
The nominal flexural strength is obtained from; 
 

 
     (Eq. 10 ; AISC F1-2)) 
 

 
 
Cb is a modification factor for non-uniform moment diagrams, and permitted 
to be conservatively taken as 1.0 for all cases (see AISC LRFD manual 
equation F1-3 for actual value of Cb). 
 
The terms Lr  and Mr are defined as: 
 

 
                  (Eq. 11 ; AISC F1-6) 
 
 

 
     Mr  = FL Sx                                                                                              (Eq. 12 ; AISC F1-7) 
 
 
 

Lr  =  ry X1

FL

1 + 1 + X2 FL
2

Mn = Cb Mp - (Mp - Mr) 
Lb - Lp

Lr - Lp

Mp

Mn

Lb

Mp

Mr

Lp Lr

Elastic LTBInelastic
 LTB

No
Instability
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For Doubly Symmetric I-shapes and Channels with Lb > Lr: 
 
The nominal flexural strength is obtained from; 
 

                                                 (Eq. 13 ; AISC F1-12) 
 

and 
 

 
                (Eq. 14 ; AISC F1-13) 
 
 

Written also as: 
 
 
 
 

 
 
where, 
 

 
                                       (Eq. 15 ; AISC F1-8) 
 

 
2 
                                                (Eq. 16 ; AISC F1-9) 
 
 

Sx = section modulus about major axis, in3 
G = Shear modulus of elasticity of steel, 11,200 ksi 
FL = smaller of (Fyf – Fr) or Fyw, ksi 
Fr = compressive residual stress in flange; 10 ksi for rolled shapes, 16.5 ksi 
for welded built-up shapes 
Fyf = yield stress of flange, ksi 
Fw = yield stress of web, ksi 
A = cross-sectional area, in2 
J = torsional constant, in4  
Iy = moment of inertia about y-axis, in.4 
Cw = warping constant, in6 

 

Mn = Mcr Mp

Mcr =
Cb

Lb

EIyGJ + E
Lb

Iy Cw

2π π

SxMcr =
Cb

Lb / ry

X1 2 1 + 
X1

2 X2

2 (Lb / ry)
2

X1  =
π
Sx

EGJA
2

X2  =
Iy

4
Cw Sx

GJ



www.PDHcenter.com                                    PDH Course S165                                     www.PDHonline.org 
 

Page 15 of 25

Rarely a beam exists with its compression flange entirely free of all restraint.  
Even when it does not have a positive connection to a floor or roof system, 
there is friction between the beam flange and the element that it supports.  
 
Figure 8 shows types of definite lateral support, and Fig. 9 illustrates the 
importance to examine the entire system, not only the individual beam for 
adequate bracing. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 
 
 

 
 

Figure  9 
 

As shown on Figure 9.a, beam AB is laterally supported with a cross beam 
framing in at midspan, but buckling of the entire system is still possible 
unless the system is braced as depicted on Fig. 9.b. 

Shear connector

Metal deck with concrete slab

Welded

Open web joists

a) Ineffective lateral bracing b) Effective lateral bracing

A

B B

A
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7.  Moment Gradient and Modification Factor Cb 

 
The nominal moment strength given by equations 10 and 14 can be taken 
conservatively using Cb = 1.0, and it’s based on an uniform applied moment 
over the unbraced length.  Otherwise, there is a moment gradient , and the 
modification factor Cb adjust the moment strength for those situations where 
the compressive component on the flange element varies along the length. 
 
The factor Cb is given as: 
 
 

  
                 (Eq. 17 ; AISC F1-3) 
 

 
where: 
 
Mmax = absolute value of the maximum moment within the unbraced length 
(including the end points) 
MA = absolute value of the moment at the quarter point of the unbraced 
length 
MB = absolute value of the moment at the midpoint of the unbraced length 
MC = absolute value of the moment at the three-quarter point of the unbraced 
length 
 
Figure 10 shows typical values for Cb based on loading conditions and 
lateral support locations for common conditions.  Refer to Table 5-1 in Part 
5 of the AISC Manual for additional cases. 
 
 

Cb = 
12.5 Mmax

2.5 Mmax  +  3 MA  +  4 MB  + 3 Mc 
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Figure  10 
 
 
 
Example 2 
 
Determine the design strength φbMn for a W18 x 50 beam, ASTM A992 
(Fy = 50 ksi, Fu = 65 ksi). 
 

a. continuous lateral support 
b. unbraced length = 15 ft., Cb = 1.0 
c. unbraced length = 15 ft., Cb =  1.32 

 

Lb = L

Cb = 1.14

Lb = L / 2

Cb = 1.30

Lb = L

Cb = 1.32

Lb = L / 2

Cb = 1.67

(a) (b)

(c) (d)

 Indicate points of lateral support for the compression flange
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Section Properties taken from Part 1 of the AISC Manual (LRFD, 3rd 
Edition): 
 
A = 14.7 in2   d = 18.0 in   tw =0.355 in  bf = 7.50 in  tf = 0.57 in 
 
bf / 2 tf = 6.57     Sx = 88.9 in3   Zx = 101 in3   ry =1.65 in. 
 
X1 =1920   X2 = 12400 x 106 

 

 
Solution 
a.   Check whether this shape is compact, non-compact, or slender: 
 
 
  
 
This shape is compact and as stated previously all shapes in the Manual meet 
web compactness. 
 
Thus,  Mn = Mp = Fy Zx = 50(101) = 5,050 in.-kips = 420.8 ft-kips 
 

Answer:  φbMn  =  0.90(420.8) = 378.8 ft-kips 
 

 
b.   Lb = 15 ft. and Cb = 1.0 
 
Compute Lp and Lr , using equations 9 and 11 below: 
 

                                
 
 

 
 
 
Or, both of these values are given in Tables 5-2 and 5-3, Part 5 of the ASIC 
Manual: 
 
Lp = 5.83 ft.  and Lr =15.6 ft 
 
Since Lp = 5.83 ft.  < Lb = 15 ft  and  Lb = 15 ft. < Lr = 15.6 ft, the moment 
strength is based on inelastic Lateral-Torsional Buckling, 
 

bf

2 tf

= 6.57 0.38 29000
50

= 9.15

Lp  =  1.76 ry
E
Fyf

Lr  =  ry X1

FL

1 + 1 + X2 FL
2
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Mr  = (Fy – Fr) Sx  = (50 – 10) 88.9 / 12 = 296.3 ft.-kips 
 

 
 
 

 
Answer:  φbMn  =  0.90(303.9) = 273.6 ft-kips 

 
c.   Lb = 15 ft. and Cb = 1.32 
 
The design strength for Cb = 1.32 is 1.32 times the strength for Cb = 1.0, 
then: 
 
Mn =  1.32(303.9) = 361.1 ft-kips   ≤   Mp = 420.8  ft-kips 
 

Answer:  φbMn  =  0.90(361.1) = 325.0 ft-kips 
 

Part 5 of the Manual of Steel Construction, “Design of Flexural Members” 
contains many useful graphs, and tables for the analysis and design of 
beams.  For example, the following value for a listed shape is given in 
Tables 5-2 and 5-3, for a W18 x 50:  
 
 
 
 
thus, φbMn  can be written as: 
 

 
                         (Eq. 18) 
                                                                              
 

Example 3 
 
A simply supported beam with a span length of 35 feet is laterally supported 
at its ends only.  The service dead load = 450 lb/ ft (including the weight of 
the beam), and the live load is 900 lb/ft.  Determine if a W12 x 65 shape is 
adequate.  Use ASTM A992 (Fy = 50 ksi, Fu = 65 ksi). 
 

Mn = Cb Mp - (Mp - Mr) 
Lb - Lp

Lr - Lp

Mp

Mn = 1.0 420.8 - (420.8 - 296.3) 
15 - 5.83

15.6 - 5.83
= 303.9  ft-kips 420.8  ft-kips

Lr - Lp

Mp - Mr BF = = 11.5φb φb

Mn = Cb Mp (Lb - Lp) Mp- BFφb φb φb
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The factored load and moment are: 
 
Wu = 1.2 (450) + 1.6 (900) = 1,980 lb/ft 
 
Mu = wu L2 / 8 = 1.98 (35)2 / 8 = 303.2 ft-kips 
 
W 12 x 65 - Section Properties taken from Part 1 of the AISC Manual 
(LRFD, 3rd Edition): 
 
A = 19.1 in2   d = 12.1 in   tw =0.39 in   bf = 12.0 in  tf = 0.605 in 
 
bf / 2 tf = 9.92     Sx = 87.9 in3   Zx = 96.8 in3   ry =3.02 in. 
 
X1 =2940   X2 = 1720 x 106 

 
Solution 
Check whether this shape is compact, non-compact, or slender: 
 
 
 
 
 
 
 
 
 
 
 
Since, 
 
This shape is noncompact.  Check the capacity based on the limit state of 
flange local buckling: 
 
Mp = Fy Zx = 50(96.8) / 12 = 403.3 ft.-kips 

bf

2 tf

= 9.92=

=
p 0.38 29000

50
= 9.15

E
Fy - Fr

0.83r = = 29,000
50 - 10

0.83 = 22.3

p r

L = 35 ft



www.PDHcenter.com                                    PDH Course S165                                     www.PDHonline.org 
 

Page 21 of 25

 
Mr = (Fy – Fr) Sx = (50 – 10) 87.9 / 12 = 293.0 ft-kips 
 
 
 

  
Check the capacity based on the limit state of lateral-torsional buckling: 
 
Obtain Lp and Lr , using equations 9 and 11 (on pages 13 & 14) or from 
Tables 5-2 or 5-3 from the LRFD manual Part 5: 
 
Lp = 11.9 ft   and   Lr = 31.7 ft 
 
Lb = 35 ft  >  Lr = 31.7 ft     
                                 ∴  Beam limit state is elastic lateral-torsional buckling 
                                                                               
From Part 1 of the manual, for a W12 x 65: 
 
Iy = 174  in4      J = 2.18  in4   Cw = 5,770 in6 

 

For a uniformly distributed load, simply supported beam with lateral support 
at the ends,  Cb = 1.14  (see Fig. 10) 
 
From equation 14 (AISC F1-13): 

 
  
 
 
 

 

 
 
 

Mn = Mp - (Mp - Mr) 
p-

p-r

Mn = 403.3 - (403.3 - 293.0) 9.92 - 9.15
22.3 - 9.15

= 396.8 ft.-kips

Mcr =
Cb π

Lb

EIyGJ + πE
Lb

Iy Cw Mp

2

Mcr =  1.14
35(12)

29,000(174)(11,200)(2.18) + 
x 29,000

35 x 12
(174) (5,770)

=  1.14 (3,088) =  3,520 in.-kips = 293 ft.-kips Mcr 

2π π
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Mp = 403.3 ft.-kips  > 293 ft.-kips       ∴OK 
 
Answer: 

  φbMn  =  0.90(293) = 264 ft-kips 
 
As φbMn  = 264 ft.-kips  <  Mu = 303.2 ft.-kips, this shape is not adequate for 
the given loading and support condition. 
 
Note: Tables 5-2 and 5-3 in the AISC manual Part 5, facilitates the 
identification of noncompact shapes with marks on the shapes that leads to 
the footnotes. 
 
8.  Shear Design for Rolled Beams 
 
The shear strength requirement in the LRFD is covered in Part 16, section 
F2, and it applies to unstiffened webs of singly or doubly symmetric beams, 
including hybrid beams, and channels subject to shear in the plane of the 
web. 
 
The design shear strength shall be larger than factored service shear load, 
applicable to all beams with unstiffened webs, with h / tw ≤ 260 (see figure 6)   
 

φvVn ≥ Vu     (Equation 19) 
 
The three basic equations for nominal shear strength Vn are given in LRFD 
as follow: 
 
For unstiffened webs, with h /tw ≤ 260 the design shear strength is φvVn 
where: 
φv = 0.90 
 
and Vn  is given as: 
 
 
 
 
a)  No web instability; 
 
    Vn  = 0.6 Fyw Aw           ( Eq. 20 ; AISC F2-1) 

For h / tw 2.45 E / Fyw
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b)  Inelastic web buckling;  
 

                    
              ( Eq. 21 ; AISC F2-2) 
 

 
c) the limit state is elastic web 

buckling   
 

 
 
The web area Aw is taken as the overall depth d times the web thickness, tw; 
   
 
 
 
 
 
 
 
 
 
 
The general design shear strength of webs with or without stiffeners is 
covered in the AISC LRFD, Appendix F2.2. 
 
Shear is rarely a problem in rolled steel beam used in ordinary steel 
construction.  The design of beams usually starts with determining the 
flexural strength, and then to check it for shear. 
 
 
 
 
 
 Example 4 
 

For 2.45 E / Fyw h / tw 3.07 E / Fyw

Vn = 0.6 Fyw Aw 2.45 E / Fyw

h / tw 

For E / Fyw h / tw 3.07 260

Vn =  Aw 4.52 E
(h / tw)2 

(Eq. 22 ; AISC F2-3)

d
tw

Aw = d x tw



www.PDHcenter.com                                    PDH Course S165                                     www.PDHonline.org 
 

Page 24 of 25

A simply supported beam with a span length of 40 feet has the following 
service loads: dead load = 600 lb/ ft (including the weight of the beam), and 
the live load is 1200 lb/ft.  Using a S18 x 54.7 rolled shape, will the beam be 
adequate in shear? 
Material specification: ASTM A36 (Fy = 36 ksi, Fu = 58 ksi). 
 
Solution  
 
       The factored load and shear are: 
 
Wu = 1.2 (600) + 1.6 (1,200) = 2,640 lb/ft 
 
Vu = wu L / 2 = 2.64 (40) / 2 = 52.8 kips 
 
S 18 x 54.7 - Section Properties taken from Part 1 of the AISC Manual 
(LRFD, 3rd Edition): 
 
d = 18 in   tw =0.461 in   h / tw =33.2 
 

 
 
 

Since h / tw  = 33.2 is < 69.54, the shear strength is governed by shear 
yielding of the web 
 
Vn = 0.60 Fyw Aw = 0.6(36)(18)(0.461) = 179.2 kips 
 
φvVn = 0.90(179.2) = 161.3 > 52.8 kips  (OK) 
 
The section S 18 x 54.7 is adequate in resisting the design shear 
 
9.  Deflection Considerations in Design of Steel Beams 
 
In many occasions the flexibility of a beam will dictate the final design of 
such a beam.  The reason is that the deflection (vertical sag) should be 
limited in order for the beam to function without causing any discomfort or 
perceptions of unsafety for the occupants of the building.  Deflection is a 
serviceability limit state, so service loads (unfactored loads) should be used 
to check for beam deflections. 
 
The AISC specification provides little guidance regarding the appropriate 
limit for the maximum deflection, and these limits are usually found in the 

2.45 E / Fyw = 2.45 29,000 /36 = 69.54
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governing building code, expressed as a fraction of the beam span length L, 
such as L/240.  The appropriate limit for maximum deflection depends on 
the function of the beam and the possibility of damage resulting from 
excessive deflections.   
    
The AISC manual provides deflection formulas for a variety of beams and 
loading conditions, in Part 5, “Design of Flexural Members”. 
 
Course Summary: 
 
This course has presented the basic principles related to the design of 
flexural members (beams) using the latest edition of the AISC, Manual of 
Steel Construction, Load Resistance Factor Design, 3rd Edition. 
 
The items discussed in this course included: general requirements for 
flexural strength, bending stress and plastic moment, nominal flexural 
strength for doubly symmetric shapes and channels, compact and non-
compact sections criteria, elastic and inelastic lateral-torsional buckling bent 
about their major axis, and shear strength of beams.  
 
The complete design of a beam includes items such as bending strength, 
shear resistance, deflection, lateral support, web crippling and yielding, and 
support details.  We have covered the major issues in the design of rolled 
shape beams, such as bending, shear and deflection.   
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